Geometry and dynamics of admissible metrics in measure spaces

被引:23
|
作者
Vershik, Anatoly M. [1 ]
Zatitskiy, Pavel B. [1 ]
Petrov, Fedor V. [1 ]
机构
[1] Russian Acad Sci, Math Inst, St Petersbrug Branch, St Petersburg 191023, Russia
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2013年 / 11卷 / 03期
关键词
Admissible metric; Measure space; Automophisms; Scaling entropy; Criteria of discreteness spectrum; ENTROPY; EXAMPLES; THEOREM;
D O I
10.2478/s11533-012-0149-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a wide class of metrics in a Lebesgue space, namely the class of so-called admissible metrics. We consider the cone of admissible metrics, introduce a special norm in it, prove compactness criteria, define the epsilon-entropy of a measure space with an admissible metric, etc. These notions and related results are applied to the theory of transformations with invariant measure; namely, we study the asymptotic properties of orbits in the cone of admissible metrics with respect to a given transformation or a group of transformations. The main result of this paper is a new discreteness criterion for the spectrum of an ergodic transformation: we prove that the spectrum is discrete if and only if the epsilon-entropy of the averages of some (and hence any) admissible metric over its trajectory is uniformly bounded.
引用
收藏
页码:379 / 400
页数:22
相关论文
共 50 条
  • [2] On the geometry of irreversible metric-measure spaces: Convergence, stability and analytic aspects
    Kristaly, Alexandru
    Zhao, Wei
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 158 : 216 - 292
  • [3] Dichotomy Gap Conditions, Admissible Spaces, and Inertial Manifolds
    Nguyen, Thieu Huy
    Vu, Thi Ngoc Ha
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (04) : 3623 - 3642
  • [4] Morrey Spaces for Nonhomogeneous Metric Measure Spaces
    Cao Yonghui
    Zhou Jiang
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [5] THE GEOMETRY OF DOMAINS WITH NEGATIVELY PINCHED KAHLER METRICS
    Bracci, Filippo
    Gaussier, Herve
    Zimmer, Andrew
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 126 (03) : 909 - 938
  • [6] Integral equations in measure spaces
    Horváth, L
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2003, 45 (02) : 155 - 176
  • [7] APPROXIMATION IN QUANTUM MEASURE SPACES
    Khare, Mona
    Singh, Bhawana
    Shukla, Anurag
    MATHEMATICA SLOVACA, 2018, 68 (03) : 491 - 500
  • [8] Entropic Measure on Multidimensional Spaces
    Sturm, Karl-Theodor
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VI, 2011, 63 : 261 - 277
  • [9] Strict topologies on measure spaces
    Samea, H.
    Fasahat, E.
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (17-18) : 3020 - 3028
  • [10] On the Borel complexity and the complete metrizability of spaces of metrics
    Koshino, Katsuhisa
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2024, 12 (01):