The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells

被引:401
作者
Ramos, Joe W. [1 ]
机构
[1] Univ Hawaii Manoa, Canc Res Ctr Hawaii, Dept Nat Prod & Canc Biol, Honolulu, HI 96813 USA
关键词
ERK; MAP kinase; Signal transduction; Scaffold; Phosphatase;
D O I
10.1016/j.biocel.2008.04.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mitogen-activated protein (MAP) kinase extracellular-signal-regulated kinases (ERKs) are activated by diverse mechanisms. These include ligation of receptor tyrosine kinases such as epidermal growth factor (EGF) and cell adhesion receptors such as the integrins. In general, ligand binding of these receptors leads to GTP loading and activation of the small GTPase Ras, which recruits Raf to the membrane where it is activated. Raf subsequently phosphorylates the dual specificity MAP/ERK kinase (MEK1/2) which in turn phosphorylates and thereby activates ERK. ERK is a promiscuous kinase and can phosphorylate more than 100 different substrates. Therefore activation of ERK can affect a broad array of cellular functions including proliferation, survival, apoptosis, motility, transcription, metabolism and differentiation. ERK activity is controlled by many distinct mechanisms. Scaffold proteins control when and where ERK is activated while anchoring proteins can restrain ERK localization to specific subcellular compartments. Meanwhile, phosphatases dephosphorylate and inactivate ERK thereby shutting off the pathway. Finally, several feedback mechanisms have been identified downstream of ERK activation. Here we will focus on the diverse mechanisms of ERK regulation in mammalian cells. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2707 / 2719
页数:13
相关论文
共 158 条
[1]   Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer [J].
Adachi, M ;
Fukuda, M ;
Nishida, E .
EMBO JOURNAL, 1999, 18 (19) :5347-5358
[2]   Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism [J].
Adachi, M ;
Fukuda, M ;
Nishida, E .
JOURNAL OF CELL BIOLOGY, 2000, 148 (05) :849-856
[3]  
ARAUJO H, 1993, J BIOL CHEM, V268, P5911
[4]   MAP kinase pathways: The first twenty years [J].
Avruch, Joseph .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2007, 1773 (08) :1150-1160
[5]   Identification of novel in vivo Raf-1 phosphorylation sites mediating positive feedback Raf-1 regulation by extracellular signal-regulated kinase [J].
Balan, V ;
Leicht, DT ;
Zhu, J ;
Balan, K ;
Kaplun, A ;
Singh-Gupta, V ;
Qin, J ;
Ruan, H ;
Comb, MJ ;
Tzivion, G .
MOLECULAR BIOLOGY OF THE CELL, 2006, 17 (03) :1141-1153
[6]   Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions [J].
Biondi, RM ;
Nebreda, AR .
BIOCHEMICAL JOURNAL, 2003, 372 :1-13
[7]   Ras pathway signaling on endomembranes [J].
Bivona, TG ;
Philips, MR .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (02) :136-142
[8]   A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia [J].
Borsello, T ;
Clarke, PGH ;
Hirt, L ;
Vercelli, A ;
Repici, M ;
Schorderet, DF ;
Bogousslavsky, J ;
Bonny, C .
NATURE MEDICINE, 2003, 9 (09) :1180-1186
[9]   The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44(MAPK) cascade [J].
Brondello, JM ;
Brunet, A ;
Pouyssegur, J ;
McKenzie, FR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (02) :1368-1376
[10]   Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation [J].
Brondello, JM ;
Pouysségur, J ;
McKenzie, FR .
SCIENCE, 1999, 286 (5449) :2514-2517