Ultra-broadband and wide-angle terahertz polarization converter based on symmetrical anchor-shaped metamaterial

被引:32
|
作者
Zou, Mengqiang [1 ]
Su, Miyong [1 ]
Yu, Hua [1 ]
机构
[1] Guilin Univ Elect Technol, Acad Marine Engn, Beihai 536000, Peoples R China
关键词
Terahertz; Metamaterial; Polarization converter; Wide angle; SPECTROSCOPY; METASURFACE;
D O I
10.1016/j.optmat.2020.110062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a reflective terahertz metamaterial linear polarization converter, consisting of three layers: an array of metallic symmetrical anchor-shaped resonators, poly tetra fluoroethylene (PTFE) as a low loss dielectric layer, and a metal surface ground plane. The simulation results show that the proposed metamaterial can convert the linearly polarized waves into the cross-polarized waves with a polarization conversion ratio (PCR) of above 93% in the frequency range of 1.21-2.83 THz and the relative bandwidth is as high as 80.2%. The proposed metamaterial is valid for a wide range of incident angles, and the average polarization conversion ratio remains 93% even though the incident angle reaches 45 degrees. Additionally, we theoretically analyzed the conversion mechanism of achieving a high-efficiency linear polarization conversion in a wide frequency range by calculating the polarization angle and elliptical angle of the reflected terahertz waves. The experiment results using the terahertz time domain spectroscopy (THz-TDS) consist well with the simulation results. Our design will provide an important reference for the practical applications of the metamaterials in polarization manipulation.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber
    Li, Xinwang
    Liu, Hongjun
    Sun, Qibing
    Huang, Nan
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2015, 15 : 81 - 88
  • [2] Ultra-broadband wide-angle terahertz absorber realized by a doped silicon metamaterial
    Jiang, Mingwei
    Song, Zhengyong
    Liu, Qing Huo
    OPTICS COMMUNICATIONS, 2020, 471
  • [3] Water metamaterial for ultra-broadband and wide-angle absorption
    Xie, Jianwen
    Zhu, Weiren
    Rukhlenko, Ivan D.
    Xiao, Fajun
    He, Chong
    Geng, Junping
    Liang, Xianling
    Jin, Ronghong
    Premaratne, Malin
    OPTICS EXPRESS, 2018, 26 (04): : 5052 - 5059
  • [4] Terahertz wide-band wide-angle absorber and polarization converter based on VO2 metamaterial
    Li, Xin
    Zhou, Yaxin
    Nie, Sihan
    Sun, Pengfei
    Su, Lijing
    Gao, Yang
    PHYSICA SCRIPTA, 2024, 99 (09)
  • [5] Ultra-broadband and wide-angle reflective terahertz polarization conversion metasurface based on topological optimization
    Zhang, Ya-Jie
    Li, Chao-Long
    Luan, Jia-Qi
    Zhao, Ming
    Gao, Ding-Shan
    Li, Pei-Li
    CHINESE PHYSICS B, 2024, 33 (10)
  • [6] Highly Efficient, Ultra-broadband and Wide-angle Cross Polarization Converter based on Anisotropic Metasurface
    Ahmad, Tauqir
    Rahim, Arbab Abdur
    Bilal, Rana Muhammad Hasan
    Noor, Adnan
    Maab, Husnul
    2021 1ST INTERNATIONAL CONFERENCE ON MICROWAVE, ANTENNAS & CIRCUITS (ICMAC), 2021,
  • [7] An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial
    Yang, Xue
    Zhang, Bo
    Shen, Jingling
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (08)
  • [8] An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial
    Xue Yang
    Bo Zhang
    Jingling Shen
    Optical and Quantum Electronics, 2018, 50
  • [9] Broadband, polarization-insensitive and wide-angle terahertz metamaterial absorber
    Wang, Ben-Xin
    Wang, Ling-Ling
    Wang, Gui-Zhen
    Huang, Wei-Qing
    Zhai, Xiang
    PHYSICA SCRIPTA, 2014, 89 (11)
  • [10] Ultra-broadband, wide-angle, and polarization-insensitive metamaterial perfect absorber for solar energy harvesting
    Sekhi, Saad Zahraw
    Shokooh-Saremi, Mehrdad
    Mirsalehi, Mir Mojtaba
    JOURNAL OF NANOPHOTONICS, 2020, 14 (04)