Diffusion in hydrogel-supported phospholipid bilayer membranes

被引:2
|
作者
Wang, Chih-Ying [1 ]
Hill, Reghan J. [1 ]
机构
[1] McGill Univ, Dept Chem Engn, Montreal, PQ H3A 0C5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
biological fluid dynamics; membranes; porous media; LIPID-BILAYERS; ROTATIONAL DRAG; BROWNIAN-MOTION; PROTEINS; DELIVERY; PERMEABILITY; CHOLESTEROL; DISK;
D O I
10.1017/jfm.2013.128
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We model a cylindrical inclusion (lipid or membrane protein) translating with velocity U in a thin planar membrane (phospholipid bilayer) that is supported above and below by Brinkman media (hydrogels). The total force F, membrane velocity, and solvent velocity are calculated as functions of three independent dimensionless parameters: Lambda = eta a/(eta(m)h), l(1)/a and l(2)/a. Here, eta and eta(m) are the solvent and membrane shear viscosities, a is the particle radius, h is the membrane thickness, and l(1)(2) and l(2)(2) are the upper and lower hydrogel permeabilities. As expected, the dimensionless mobility 4 pi eta aU/F = 4 pi eta aD/(k(B)T) (proportional to the self-diffusion coefficient, D) decreases with decreasing gel permeabilities (increasing gel concentrations), furnishing a quantitative interpretation of how porous, gel-like supports hinder membrane dynamics. The model also provides a means of inferring hydrogel permeability and, perhaps, surface morphology from tracer diffusion measurements.
引用
收藏
页码:352 / 373
页数:22
相关论文
共 50 条
  • [21] Sulfonylureas rapidly cross phospholipid bilayer membranes by a free-diffusion mechanism
    Kamp, F
    Kizilbash, N
    Corkey, BE
    Berggren, PO
    Hamilton, JA
    DIABETES, 2003, 52 (10) : 2526 - 2531
  • [22] LATERAL DIFFUSION OF GANGLIOSIDE-GM1 IN PHOSPHOLIPID-BILAYER MEMBRANES
    GOINS, B
    MASSERINI, M
    BARISAS, BG
    FREIRE, E
    BIOPHYSICAL JOURNAL, 1986, 49 (04) : 849 - 856
  • [23] The first catalytic hydrolysis of ethylenediamine bisborane with hydrogel-supported metallic nanoparticles
    Engin, Melih
    Ozay, Ozgur
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (32) : 15083 - 15094
  • [24] Mechanistic insights into the hydrogel-supported catalyst for superior oxygen evolution performance
    Wei, Yuxuan
    Xu, Lingling
    Shi, Kefan
    Gong, Hanwen
    Hu, Jiaming
    Zhang, Xianghao
    Pan, Meilan
    Ang, Edison Huixiang
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [25] Supported phospholipid bilayer at the Conductive Interface
    Sokolova, Romana
    Kocabova, Jana
    Kolivoska, Viliam
    Gal, Miroslav
    XXXVII MODERNI ELEKTROCHEMICKE METODY, 2017, : 190 - 193
  • [26] Concentration dependence of lipopolymer self-diffusion in supported bilayer membranes
    Zhang, Huai-Ying
    Hill, Reghan J.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2011, 8 (54) : 127 - 143
  • [27] Nonlinear optical studies of supported bilayer membranes: Phospholipid organization and transmembrane polypeptide incorporation
    Levy, Dustin
    Briggman, Kimberly A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [28] Magnetically-controlled release from hydrogel-supported vesicle assemblies
    Mart, Robert J.
    Liem, Kwan Ping
    Webb, Simon J.
    CHEMICAL COMMUNICATIONS, 2009, (17) : 2287 - 2289
  • [29] Controlled switching of the wetting behavior of biomimetic surfaces with hydrogel-supported nanostructures
    Sidorenko, Alexander
    Krupenkin, Tom
    Aizenberg, Joanna
    JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (32) : 3841 - 3846
  • [30] PHOSPHOLIPID EXCHANGE BETWEEN BILAYER MEMBRANES
    DUCKWITZPETERLEIN, G
    EILENBERGER, G
    OVERATH, P
    BIOCHIMICA ET BIOPHYSICA ACTA, 1977, 469 (03) : 311 - 325