Algebraic realization of supersymmetric quantum mechanics for cyclic shape invariant potentials

被引:0
作者
Quesne, C [1 ]
Vansteenkiste, N [1 ]
机构
[1] Free Univ Brussels, B-1050 Brussels, Belgium
来源
HELVETICA PHYSICA ACTA | 1999年 / 72卷 / 01期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study in detail the spectrum of the bosonic oscillator Hamiltonian associated with the C-3-extended oscillator algebra A(alpha 0 alpha 1)((3)) where C-3 denotes a cyclic group of order three, and classify the various types of spectra in terms of the algebra parameters alpha(0), alpha(1). In such a classification, we identify those spectra having: an infinite number of periodically; spaced levels, similar to those of cyclic shape invariant potentials of period three. We prove that the hierarchy of supersymmetric Hamiltonians and supercharges, corresponding to the latter, can be realized in terms of some appropriately chosen A(alpha 0 alpha 1)((3)) algebras, and of Pauli spin matrices. Extension to period-lambda spectra in terms of Cx-extended oscillator algebras is outlined.
引用
收藏
页码:71 / 92
页数:22
相关论文
共 50 条
[41]   Algebraic nature of shape-invariant and self-similar potentials [J].
Balantekin, AB ;
Ribeiro, MAC ;
Aleixo, ANF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (15) :2785-2790
[42]   Comment on 'The Darboux transformation and algebraic deformations of shape-invariant potentials [J].
Sinha, A ;
Roy, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (34) :8401-8404
[43]   Solvable Rational Potentials and Exceptional Orthogonal Polynomials in Supersymmetric Quantum Mechanics [J].
Quesne, Christiane .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
[44]   Bound states in continuum of complex potentials generated by supersymmetric quantum mechanics [J].
Petrovic, JS ;
Milanovic, V ;
Ikonic, Z .
PHYSICS LETTERS A, 2002, 300 (06) :595-602
[45]   An algebraic construction of generalized coherent states for shape-invariant potentials [J].
Aleixo, ANF ;
Balantekin, AB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (35) :8513-8528
[46]   SCATTERING-AMPLITUDES FOR SUPERSYMMETRIC SHAPE-INVARIANT POTENTIALS BY OPERATOR METHODS [J].
KHARE, A ;
SUKHATME, UP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (09) :L501-L508
[47]   IS THE LOWEST ORDER SUPERSYMMETRIC WKB APPROXIMATION EXACT FOR ALL SHAPE INVARIANT POTENTIALS [J].
BARCLAY, DT ;
KHARE, A ;
SUKHATME, U .
PHYSICS LETTERS A, 1993, 183 (04) :263-266
[48]   Algebraic Approach for Shape Invariant Potentials in Klein-Gordon Equation [J].
M. R. Setare ;
O. Hatami .
International Journal of Theoretical Physics, 2009, 48 :2977-2986
[49]   Algebraic Approach for Shape Invariant Potentials in Klein-Gordon Equation [J].
Setare, M. R. ;
Hatami, O. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (10) :2977-2986
[50]   PHASE-EQUIVALENT POTENTIALS FROM SUPERSYMMETRIC QUANTUM-MECHANICS [J].
TALUKDAR, B ;
DAS, U ;
BHATTACHARYYA, C ;
BERA, PK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (14) :4073-4082