Band-gap tuning of graphene by Be doping and Be, B co-doping: a DFT study

被引:90
作者
Ullah, Saif [1 ]
Hussain, Akhtar [2 ,4 ]
Syed, WaqarAdil [1 ]
Saqlain, Muhammad Adnan [3 ]
Ahmad, Idrees [4 ]
Leenaerts, Ortwin [5 ]
Karim, Altaf [6 ]
机构
[1] Int Islamic Univ, Dept Phys, Islamabad, Pakistan
[2] Pakistan Inst Nucl Sci & Technol PINSTECH, TPD, Islamabad, Pakistan
[3] Quaid I Azam Univ, Dept Chem, Islamabad, Pakistan
[4] Pakistan Inst Engn & Appl Sci, DNE, Islamabad, Pakistan
[5] Univ Antwerp, Dept Fys, B-2020 Antwerp, Belgium
[6] COMSATS Inst Informat Technol, Islamabad, Pakistan
关键词
DOPED GRAPHENE; BORON-NITRIDE; ALGORITHM;
D O I
10.1039/c5ra08061d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
First-principles density functional theory (DFT) calculations were carried out to investigate the structural and electronic properties of beryllium (Be) doped and Be and boron (B) co-doped graphene systems. We observed that not only the concentration of impurity atoms is important to tune the band-gap to some desired level, but also the specific substitution sites play a key role. In our system, which consists of 32 atoms, a maximum of 4Be and, in the co-doped state, 2Be and 3B atom substitutions are investigated. Both dopants are electron deficient relative to C atoms and cause the Fermi level to shift downward (p-type doping). A maximum band gap of 1.44 eV can be achieved on incorporation of 4Be atoms. The introduction of Be is more sensitive in terms of geometry and stability than B. However, in opening the energy gap, Be is more effective than B and N (nitrogen). Our results offer the possibility to modify the band-gap of graphene sufficiently for utilization in diverse electronic device applications.
引用
收藏
页码:55762 / 55773
页数:12
相关论文
共 55 条
[1]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/NNANO.2010.8, 10.1038/nnano.2010.8]
[2]   Chemically Induced Mobility Gaps in Graphene Nanoribbons: A Route for Upscaling Device Performances [J].
Biel, Blanca ;
Triozon, Francois ;
Blase, X. ;
Roche, Stephan .
NANO LETTERS, 2009, 9 (07) :2725-2729
[3]   QUASI-PARTICLE BAND-STRUCTURE OF BULK HEXAGONAL BORON-NITRIDE AND RELATED SYSTEMS [J].
BLASE, X ;
RUBIO, A ;
LOUIE, SG ;
COHEN, ML .
PHYSICAL REVIEW B, 1995, 51 (11) :6868-6875
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[6]   Limits on Charge Carrier Mobility in Suspended Graphene due to Flexural Phonons [J].
Castro, Eduardo V. ;
Ochoa, H. ;
Katsnelson, M. I. ;
Gorbachev, R. V. ;
Elias, D. C. ;
Novoselov, K. S. ;
Geim, A. K. ;
Guinea, F. .
PHYSICAL REVIEW LETTERS, 2010, 105 (26)
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Edge-functionalized and substitutionally doped graphene nanoribbons:: Electronic and spin properties [J].
Cervantes-Sodi, F. ;
Csanyi, G. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2008, 77 (16)
[9]   Efficient Band Gap Prediction for Solids [J].
Chan, M. K. Y. ;
Ceder, G. .
PHYSICAL REVIEW LETTERS, 2010, 105 (19)
[10]  
Cooper D. R., 2012, CONDENS MATTER PHYS, V2012, P56