GLOBAL SOLUTIONS FOR 3D NONLOCAL GROSS-PITAEVSKII EQUATIONS WITH ROUGH DATA

被引:0
|
作者
Pecher, Hartmut [1 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Math & Naturwissensch, D-42097 Wuppertal, Germany
关键词
Gross-Pitaevskii equation; global well-posedness; Fourier restriction norm method; NONLINEAR SCHRODINGER-EQUATIONS; CAUCHY-PROBLEM; BOSE CONDENSATE; MOTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for the Gross-Pitaevskii equation with a nonlocal interaction potential of Hartree type in three space dimensions. If the potential is even and positive definite or a positive function and its Fourier transform decays sufficiently rapidly the problem is shown to be globally well-posed for large rough data which not necessarily have finite energy and also in a situation where the energy functional is not positive definite. The proof uses a suitable modification of the I-method.
引用
收藏
页数:34
相关论文
共 50 条
  • [41] Energy conservation and blowup of solutions for focusing Gross-Pitaevskii hierarchies
    Chen, Thomas
    Pavlovic, Natasa
    Tzirakis, Nikolaos
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (05): : 1271 - 1290
  • [42] Profiles of blow-up solutions for the Gross-Pitaevskii equation
    Shi-hui Zhu
    Jian Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 597 - 606
  • [43] From the Gross-Pitaevskii equation to the Euler Korteweg system, existence of global strong solutions with small irrotational initial data
    Audiard, Corentin
    Haspot, Boris
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (03) : 721 - 760
  • [44] EFFICIENT TIME INTEGRATION METHODS FOR GROSS-PITAEVSKII EQUATIONS WITH ROTATION TERM
    Bader, Philipp
    Blanes, Sergio
    Casas, Fernando
    Thalhammer, Mechthild
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2019, 6 (02): : 147 - 169
  • [45] Asymptotic limit of the Gross-Pitaevskii equation with general initial data
    FuCai Li
    Chi-Kun Lin
    Kung-Chien Wu
    Science China Mathematics, 2016, 59 : 1113 - 1126
  • [46] Energy eigenfunctions of the 1D Gross-Pitaevskii equation
    Marojevic, Zelimir
    Goeklue, Ertan
    Laemmerzahl, Claus
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (08) : 1920 - 1930
  • [47] Vortex soliton solutions of a (3+1)-dimensional Gross-Pitaevskii equation with partially nonlocal distributed coefficients under a linear potential
    Wu, Hong-Yu
    Jiang, Li-Hong
    NONLINEAR DYNAMICS, 2020, 101 (04) : 2441 - 2448
  • [48] Asymptotic limit of the Gross-Pitaevskii equation with general initial data
    LI FuCai
    LIN Chi-Kun
    WU Kung-Chien
    ScienceChina(Mathematics), 2016, 59 (06) : 1113 - 1126
  • [49] ANELASTIC APPROXIMATION OF THE GROSS-PITAEVSKII EQUATION FOR GENERAL INITIAL DATA
    Lin, Chi-Kun
    Wu, Kung-Chien
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 1039 - 1046
  • [50] Limiting profile of blow-up solutions for the Gross-Pitaevskii equation
    ShiHui Zhu
    Jian Zhang
    XiaoGuang Li
    Science in China Series A: Mathematics, 2009, 52 : 1017 - 1030