GLOBAL SOLUTIONS FOR 3D NONLOCAL GROSS-PITAEVSKII EQUATIONS WITH ROUGH DATA

被引:0
|
作者
Pecher, Hartmut [1 ]
机构
[1] Berg Univ Wuppertal, Fachbereich Math & Naturwissensch, D-42097 Wuppertal, Germany
关键词
Gross-Pitaevskii equation; global well-posedness; Fourier restriction norm method; NONLINEAR SCHRODINGER-EQUATIONS; CAUCHY-PROBLEM; BOSE CONDENSATE; MOTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for the Gross-Pitaevskii equation with a nonlocal interaction potential of Hartree type in three space dimensions. If the potential is even and positive definite or a positive function and its Fourier transform decays sufficiently rapidly the problem is shown to be globally well-posed for large rough data which not necessarily have finite energy and also in a situation where the energy functional is not positive definite. The proof uses a suitable modification of the I-method.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Derivation in Strong Topology and Global Well-Posedness of Solutions to the Gross-Pitaevskii Hierarchy
    Chen, Thomas
    Taliaferro, Kenneth
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (09) : 1658 - 1693
  • [22] Cauchy matrix structure and solutions of the spin-1 Gross-Pitaevskii equations
    Li, Shangshuai
    Zhang, Da-jun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 129
  • [23] Soliton lattices in the Gross-Pitaevskii equation with nonlocal and repulsive coupling
    Sakaguchi, Hidetsugu
    PHYSICS LETTERS A, 2019, 383 (11) : 1132 - 1137
  • [24] The Gross-Pitaevskii Equation with a Nonlocal Interaction in a Semiclassical Approximation on a Curve
    Shapovalov, Alexander V.
    Kulagin, Anton E.
    Trifonov, Andrey Yu.
    SYMMETRY-BASEL, 2020, 12 (02):
  • [25] Solutions of the Gross-Pitaevskii Equation in Prolate Spheroidal Coordinates
    Borisov, A. V.
    Shapovalov, A. V.
    RUSSIAN PHYSICS JOURNAL, 2015, 57 (09) : 1201 - 1209
  • [26] Randomized final-data problem for systems of nonlinear Schrodinger equations and the Gross-Pitaevskii equation
    Nakanishi, Kenji
    Yamamoto, Takuto
    MATHEMATICAL RESEARCH LETTERS, 2019, 26 (01) : 253 - 279
  • [27] GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions
    Antoine, Xavier
    Duboscq, Romain
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (11) : 2969 - 2991
  • [28] The Gross-Pitaevskii equation: Backlund transformations and admitted solutions
    Carillo, Sandra
    Zullo, Federico
    RICERCHE DI MATEMATICA, 2019, 68 (02) : 503 - 512
  • [29] Asymptotic limit of the Gross-Pitaevskii equation with general initial data
    Li FuCai
    Lin Chi-Kun
    Wu Kung-Chien
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (06) : 1113 - 1126
  • [30] Pade approximations of quantized-vortex solutions of the Gross-Pitaevskii equation
    Chen, Weiru
    Lan, Shanquan
    Liu, Xiyi
    Mo, Jiexiong
    Xu, Xiaobao
    Li, Guqiang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (08)