A Terahertz Traveling-Wave Tube Based on Defect Photonic Crystal Waveguide

被引:9
|
作者
Bai, Ningfeng [1 ]
Xie, Yang [2 ]
Hong, Wei [2 ]
Sun, Xiaohan [1 ]
机构
[1] Southeast Univ, Res Ctr Elect Device & Syst Reliabil, Nanjing 210096, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Power generation; Gain; Impedance; Optical waveguides; Dispersion; Couplers; Defect photonic crystal waveguide (DPCW); slow-wave structure (SWS); terahertz; traveling-wave tube (TWT); VACUUM ELECTRON DEVICES;
D O I
10.1109/TPS.2020.2987138
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A defect photonic crystal waveguide (DPCW) is presented as a slow-wave structure (SWS) for terahertz (THz) traveling-wave tube (TWT). Due to the characteristics of DPCW, the mode competition and backward wave are greatly depressed, improving the stability of TWT. The DPCW SWS has flat dispersion characterization and high interaction impedance at 220 GHz. Simulation results show that saturated output power of 12.1 W, corresponding to a gain of 24.3 dB, and the 3-dB gain ripple within 20 GHz can be achieved at the center frequency of 220 GHz. The DPCW-TWT has a low working voltage at 9.52 kV compared to that of folded waveguide (FWG) SWS in this frequency band. The proposed DPCW for the THz regime is easy to fabricate and assemble using the modern fabrication processing technology.
引用
收藏
页码:1936 / 1941
页数:6
相关论文
共 50 条
  • [21] Terahertz-wave Communication System Using a Traveling-wave Tube Amplifier
    Kanno, Atsushi
    Sekine, Norihiko
    Kasamatsu, Akifumi
    Yamamoto, Naokatsu
    Yoshida, Mitsuru
    Masuda, Norio
    2018 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS-TOYAMA), 2018, : 2405 - 2409
  • [22] Parametric design of microfabricated folded waveguide for millimeter wave traveling-wave tube
    Zheng, Ruilin
    Chen, Xuyuan
    2008 3RD IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1-3, 2008, : 694 - 699
  • [23] Continuous Wave Q-band Folded Waveguide Traveling-Wave Tube
    Su, Xiaogang
    Gong, Huarong
    Xu, Jin
    Tang, Tao
    Gong, Yubin
    Wu, Gang
    Feng, Jinjun
    2015 IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC), 2015,
  • [24] A 220 GHz Traveling-Wave Tube Based on a Modified Staggered Double Corrugated Waveguide
    Ge, Weihua
    Yu, Sheng
    ELECTRONICS, 2024, 13 (22)
  • [25] A 140GHz Traveling-Wave Tube Based on Sine Waveguide and Sheet Beam
    Zhang, Luqi
    Wei, Yanyu
    Jiang, Xuebing
    Xu, Jin
    Wang, Yuanyuan
    Gong, Yubing
    2016 IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC), 2016,
  • [26] Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier
    Planat, Luca
    Ranadive, Arpit
    Dassonneville, Remy
    Martinez, Javier Puertas
    Leger, Sebastien
    Naud, Cecile
    Buisson, Olivier
    Hasch-Guichard, Wiebke
    Basko, Denis M.
    Roch, Nicolas
    PHYSICAL REVIEW X, 2020, 10 (02)
  • [27] Design of W-band Folded Waveguide Traveling-Wave Tube
    Zhang, Luqi
    Jiang, Yi
    Lei, Wenqiang
    Song, Rui
    Hu, Peng
    Ma, Guowu
    2021 46TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2021,
  • [28] Study on 1-THz Sine Waveguide Traveling-Wave Tube
    Yang, Ruichao
    Xu, Jin
    Yin, Pengcheng
    Wu, Gangxiong
    Fang, Shuanzhu
    Jiang, Xuebing
    Luo, Jinjing
    Yue, Lingna
    Yin, Hairong
    Zhao, Guoqing
    Wang, Wenxiang
    Ma, Tianjun
    Liu, Wenxin
    Wei, Yanyu
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (05) : 2509 - 2514
  • [29] Ka-band folded waveguide traveling-wave tube experiment
    Han, ST
    Kim, JI
    Jia, BF
    Park, GS
    Chang, SS
    2002 3RD INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, 2002, : 190 - 193
  • [30] Design of G-band Folded Waveguide Traveling-wave Tube
    Han, Ping
    Guo, Zugen
    Yang, Zhixin
    Ji, Rujing
    Zhang, Ruifeng
    Gong, Huarong
    2020 IEEE 21ST INTERNATIONAL CONFERENCE ON VACUUM ELECTRONICS (IVEC 2020), 2020, : 329 - 330