Graph Convolution Based Spatial-Temporal Attention LSTM Model for Flood Forecasting

被引:8
|
作者
Feng, Jun [1 ,2 ]
Sha, Haichao [1 ,2 ,3 ]
Ding, Yukai [1 ,2 ,4 ]
Yan, Le [1 ,2 ]
Yu, Zhangheng [2 ]
机构
[1] Hohai Univ, Minist Water Resources, Key Lab Water Big Data Technol, Nanjing, Peoples R China
[2] Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R China
[3] Renmin Univ China, Beijing, Peoples R China
[4] Minist Water Resources, Informat Ctr, Beijing, Peoples R China
来源
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2022年
基金
国家重点研发计划;
关键词
Graph Convolution network; LSTM; Attention mechanism; Flood forecasting; Dropedge mechanism; THRESHOLDS; RAINFALL;
D O I
10.1109/IJCNN55064.2022.9892371
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate flood forecast is crucial to ensure economic and ecological environment safety. Due to the complex factors affecting flood runoff in the small and medium-sized river basins, the traditional model cannot yield satisfactory prediction results. In this paper, we propose a novel Graph Convolution based spatial-temporal Attention LSTM(AGCLSTM) network to tackle the time series prediction problem in the flood forecasting domain. To be specific, our model contains two major modules: 1) the spatial-temporal GCN module with the dropedge mechanism which adequately captures the spatial and temporal characteristics of topological river graphs; 2) the spatial-temporal LSTM module to effectively extract temporal and spatial dynamic correlation in time series hydrological data. Experiments show that our model has excellent performance in flood peak prediction and flow calibration compared with the existing machine learning methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Spatio-Temporal Attention LSTM Model for Flood Forecasting
    Ding, Yukai
    Zhu, Yuelong
    Wu, Yirui
    Feng, Jun
    Cheng, Zirun
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 458 - 465
  • [2] STAGCN: Spatial-Temporal Attention Graph Convolution Network for Traffic Forecasting
    Gu, Yafeng
    Deng, Li
    MATHEMATICS, 2022, 10 (09)
  • [3] Attention-based spatial-temporal synchronous graph convolution networks for traffic flow forecasting
    Xiaoduo Wei
    Dawen Xia
    Yunsong Li
    Yuce Ao
    Yan Chen
    Yang Hu
    Yantao Li
    Huaqing Li
    Applied Intelligence, 2025, 55 (7)
  • [4] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Zhang, Qingyong
    Chang, Wanfeng
    Li, Changwu
    Yin, Conghui
    Su, Yixin
    Xiao, Peng
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29) : 21827 - 21839
  • [5] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Qingyong Zhang
    Wanfeng Chang
    Changwu Li
    Conghui Yin
    Yixin Su
    Peng Xiao
    Neural Computing and Applications, 2023, 35 : 21827 - 21839
  • [6] Spatial-Temporal Attention Graph Convolution Network on Edge Cloud for Traffic Flow Prediction
    Lai, Qifeng
    Tian, Jinyu
    Wang, Wei
    Hu, Xiping
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 4565 - 4576
  • [7] Interpretable spatio-temporal attention LSTM model for flood forecasting
    Ding, Yukai
    Zhu, Yuelong
    Feng, Jun
    Zhang, Pengcheng
    Cheng, Zirun
    NEUROCOMPUTING, 2020, 403 : 348 - 359
  • [8] Attention-Based Spatial-Temporal Convolution Gated Recurrent Unit for Traffic Flow Forecasting
    Zhang, Qingyong
    Chang, Wanfeng
    Yin, Conghui
    Xiao, Peng
    Li, Kelei
    Tan, Meifang
    ENTROPY, 2023, 25 (06)
  • [9] A graph-attention based spatial-temporal learning framework for tourism demand forecasting
    Zhou, Binggui
    Dong, Yunxuan
    Yang, Guanghua
    Hou, Fen
    Hu, Zheng
    Xu, Suxiu
    Ma, Shaodan
    KNOWLEDGE-BASED SYSTEMS, 2023, 263
  • [10] An Integrated Graph Model for Spatial-Temporal Urban Crime Prediction Based on Attention Mechanism
    Hou, Miaomiao
    Hu, Xiaofeng
    Cai, Jitao
    Han, Xinge
    Yuan, Shuaiqi
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (05)