Enumerating Viable N-State Markov Models of Sodium Channel Dynamics

被引:0
|
作者
Mangold, Kathryn [1 ]
Silva, Jonathan [1 ]
机构
[1] Washington Univ St Louis, Dept Biomed Engn, St Louis, MO USA
关键词
D O I
10.1016/j.bpj.2018.11.2103
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
1921-Pos
引用
收藏
页码:388A / 388A
页数:1
相关论文
共 50 条
  • [41] Relating PAC damping to EFG fluctuation rates through the PAC relaxation peakDynamic N-state symmetric models
    Tyler Park
    Jeffery A. Hodges
    Carlos Moreno
    Michael Stufflebeam
    William E. Evenson
    P. Matheson
    M. O. Zacate
    Gary S. Collins
    Hyperfine Interactions, 2011, 199 : 397 - 402
  • [42] HIGHEST-WEIGHT U(Q)[SL(N)] MODULES AND INVARIANT INTEGRABLE N-STATE MODELS WITH PERIODIC BOUNDARY-CONDITIONS
    KAROWSKI, M
    ZAPLETAL, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (22): : 7419 - 7423
  • [43] Joint modeling of terrestrial rain attenuation and land mobile satellite multipath fading time series with general N-state Markov model
    Héder, Balázs
    Bitó, János
    WSEAS Transactions on Communications, 2006, 5 (03): : 572 - 577
  • [44] Building predictive Markov models of ion channel permeation from molecular dynamics simulations
    Catacuzzeno, Luigi
    Leonardi, Maria Vittoria
    Franciolini, Fabio
    Domene, Carmen
    Michelucci, Antonio
    Furini, Simone
    BIOPHYSICAL JOURNAL, 2024, 123 (21) : 3832 - 3843
  • [45] Application of Molecular-Dynamics Based Markov State Models to Functional Proteins
    Malmstrom, Robert D.
    Lee, Christopher T.
    Van Wart, Adam T.
    Amaro, Rommie E.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (07) : 2648 - 2657
  • [46] Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine Learning
    Konovalov, Kirill A.
    Unarta, Ilona Christy
    Cao, Siqin
    Goonetilleke, Eshani C.
    Huang, Xuhui
    JACS AU, 2021, 1 (09): : 1330 - 1341
  • [47] Application of Markov State Models to Simulate Long Timescale Dynamics of Biological Macromolecules
    Da, Lin-Tai
    Sheong, Fu Kit
    Silva, Daniel-Adriano
    Huang, Xuhui
    PROTEIN CONFORMATIONAL DYNAMICS, 2014, 805 : 29 - 66
  • [48] Markov-Type State Models to Describe Non-Markovian Dynamics
    Sartore, Sofia
    Teichmann, Franziska
    Stock, Gerhard
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2025, 21 (05) : 2757 - 2765
  • [49] Potential-Based Dynamical Reweighting for Markov State Models of Protein Dynamics
    Weber, Jeffrey K.
    Pande, Vijay S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (06) : 2412 - 2420
  • [50] Learning Kinetic Distance Metrics for Markov State Models of Protein Conformational Dynamics
    McGibbon, Robert T.
    Pande, Vijay S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (07) : 2900 - 2906