The functional equation P(f) = Q(g) in a p-adic field

被引:9
作者
Escassut, A [1 ]
Yang, CC
机构
[1] Univ Clermont Ferrand, Dept Math, F-63177 Aubiere, France
[2] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
D O I
10.1016/j.jnt.2003.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a complete ultrametric algebraically closed field of characteristic pi. Let P, Q be in K[x] with P'Q' not identically 0. Consider two different functions f, g analytic or meromorphic inside a disk \x - a\ <r (resp. in all K), satisfying P(f) = Q(g). By applying the Nevanlinna's values distribution Theory in characteristic pi, we give sufficient conditions on the zeros of P, a to assure that both f, g are "bounded" in the disk (resp. are constant). If pi not equal 2 and deg(P) = 4, we examine the particular case when Q = lambdaP (lambda is an element of K) and we derive several sets of conditions characterizing the existence of two distinct functions f, g meromorphic in K such that P(f) =lambdaP(g). (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:344 / 360
页数:17
相关论文
共 18 条
[1]  
BERKOVICH V, 1990, AMS SURVEYS MONOGRAP, V33
[2]   On uniqueness of p-adic entire functions [J].
Boutabaa, A ;
Escassut, A ;
Haddad, L .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1997, 8 (02) :145-155
[3]   Applications of the p-adic Nevanlinna theory to functional equations [J].
Boutabaa, A ;
Escassut, A .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (03) :751-+
[4]   Urs and ursims for p-adic meromorphic functions inside a disc [J].
Boutabaa, A ;
Escassut, A .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2001, 44 :485-504
[5]  
BOUTABAA A, 2001, P 3 ISAAC C KLUW DOR, P97
[6]  
BOUTABAA A, NEVANLINNA THEORY CH
[7]   NON-ARCHIMEDEAN ANALYTIC CURVES IN ABELIAN-VARIETIES [J].
CHERRY, W .
MATHEMATISCHE ANNALEN, 1994, 300 (03) :393-404
[8]   Uniqueness of non-Archimedean entire functions sharing sets of values counting multiplicity [J].
Cherry, W ;
Yang, CC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) :967-971
[9]   Urs, ursim, and non-urs for p-adic functions and polynomials [J].
Escassut, A ;
Haddad, L ;
Vidal, R .
JOURNAL OF NUMBER THEORY, 1999, 75 (01) :133-144
[10]  
ESCASSUT A, 1995, ANAL ELEMENTS P ADIC