Uniqueness Theorems for Free Boundary Minimal Disks in Space Forms

被引:44
作者
Fraser, Ailana [1 ]
Schoen, Richard [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92617 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
STABILITY; SURFACES;
D O I
10.1093/imrn/rnu192
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a minimal disk satisfying the free boundary condition in a constant curvature ball of any dimension is totally geodesic. We weaken the condition to parallel mean curvature vector in which case we show that the disk lies in a three dimensional constant curvature submanifold and is totally umbilic. These results extend to higher dimensions earlier three dimensional work of J. C. C. Nitsche and R. Souam.
引用
收藏
页码:8268 / 8274
页数:7
相关论文
共 9 条
[2]  
Calabi E., 1967, J DIFFER GEOM, V1, P111
[3]   The first Steklov eigenvalue, conformal geometry, and minimal surfaces [J].
Fraser, Ailana ;
Schoen, Richard .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :4011-4030
[4]   STATIONARY PARTITIONING OF CONVEX-BODIES [J].
NITSCHE, JCC .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 89 (01) :1-19
[5]   On stability of capillary surfaces in a ball [J].
Ros, A ;
Souam, R .
PACIFIC JOURNAL OF MATHEMATICS, 1997, 178 (02) :345-361
[7]  
SPIVAK M, 1970, COMPREHENSIVE INTRO, V3
[8]  
Spivak M., 1970, A Comprehensive Introduction to Differential Geometry, VIV
[9]  
[No title captured]