A NON-ELEMENTARY PROOF BY DIFFERENTIAL EQUATION FOR THE CENTRAL LIMIT THEOREM

被引:0
作者
Korkmaz, Adil [1 ]
Onemli, Muharrem Burak [2 ]
机构
[1] Akdeniz Univ, Fac Econ & Social Sci, TR-07058 Antalya, Turkey
[2] Gediz Univ, Fac Econ & Adm Sci, Dept Econ, Izmir, Turkey
来源
PAKISTAN JOURNAL OF STATISTICS | 2013年 / 29卷 / 03期
关键词
Central Limit Theorem; Elementary Proof; Non-Elementary Proof;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The proofs of the central limit theorem are divided into two categories: elementary and non-elementary. Proofs using the characteristic function are called non-elementary while the other proofs are called elementary. Using differential equation, this paper gives a new non-elementary proof for the central limit theorem. This proof is based on a differential equation and does not use second order Taylor expansion of any characteristic function. It is apparent that given proof may only have a pedagogical importance.
引用
收藏
页码:307 / 313
页数:7
相关论文
共 13 条
[1]  
Adams W.J., 1974, LIFE TIMES CENTRAL L
[2]  
Boyer C., 1989, HIST MATH, V2nd
[3]  
Dudewicz E.J., 1988, MODERN MATH STAT
[4]  
Greene W. H., 1997, Econometric Analysis, V3rd
[5]  
Kolmogorov A.N., 1992, MATH 19 CENTURY
[6]   Central Limit Theorems revisited [J].
Kundu, S ;
Majumdar, S ;
Mukherjee, K .
STATISTICS & PROBABILITY LETTERS, 2000, 47 (03) :265-275
[7]  
Le Cam L., 1986, Statist. Sci., V1, P78, DOI DOI 10.1214/SS/1177013818
[8]   The central limit theorem for cross-variation related to the standard Brownian sheet and Berry-Esseen bounds [J].
Park, Hyun Suk ;
Jeon, Jong Woo ;
Kim, Yoon Tae .
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2011, 40 (02) :239-244
[9]  
Silverman, 1985, CALCULUS ANAL GEOMET
[10]  
Trotter H., 1959, Archiv der Mathematik, V10, P226, DOI [DOI 10.1007/BF01240790, 10.1007/BF01240790]