Simple Estimate of the Potential Drop across an Amphiprotic Liquid-Liquid Interface

被引:5
作者
Chamberlayne, Christian F. [1 ]
Zare, Richard N. [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
关键词
ELECTRIC-FIELDS;
D O I
10.1021/acs.jpcb.2c05696
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two immiscible liquids in contact with each other can have different internal electrostatic potentials. An associated electric double layer (EDL) therefore exists within each liquid. For amphiprotic liquids, the exchange of protons between the two liquids gives rise to two EDLs, a positively charged EDL in one of the liquids and negatively charged EDL in the other. Using the pKa and pKb of one liquid dissolved in the other and the pH equivalent within each amphiprotic liquid, we can estimate the potential drop, Delta q), between the interior of the two liquids, also known as the Galvani potential or liquid-liquid junction potential. This estimation is independent of surface charge and ionic strength. By using the ionic strength to find the thickness of the EDL, we also estimate the average electric field strength across the interface. For the special case of water (H2O) in contact with an immiscible alcohol (ROH), the potential drop across the interface from the water to the alcohol is Delta q) = 2.303VT (pKb + pH - pKw - pH2OR), where VT is the thermal voltage at a given temperature T.
引用
收藏
页码:8112 / 8118
页数:7
相关论文
共 22 条
[11]  
Hunter R.J., 1981, ZETA POTENTIAL COLLO, P11, DOI DOI 10.1016/B978-0-12-361961-7.50006-7
[12]   Contact Galvani potential differences at liquid|liquid interfaces -: Part II.: Contact diffusion potentials in microsystems [J].
Josserand, J ;
Lagger, G ;
Jensen, H ;
Ferrigno, R ;
Girault, HH .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2003, 546 :1-13
[13]   Installation of internal electric fields by non-redox active cations in transition metal complexes [J].
Kang, Kevin ;
Fuller, Jack ;
Reath, Alexander H. ;
Ziller, Joseph ;
Alexandrova, Anastassia ;
Yang, Jenny Y. .
CHEMICAL SCIENCE, 2019, 10 (43) :10135-10142
[14]   Micrometer-Sized Water Droplets Induce Spontaneous Reduction [J].
Lee, Jae Kyoo ;
Samanta, Devleena ;
Nam, Hong Gil ;
Zare, Richard N. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (27) :10585-10589
[15]   Spontaneous formation of gold nanostructures in aqueous microdroplets [J].
Lee, Jae Kyoo ;
Samanta, Devleena ;
Nam, Hong Gil ;
Zare, Richard N. .
NATURE COMMUNICATIONS, 2018, 9
[16]   Sprayed Water Microdroplets Are Able to Generate HydrogenPeroxide Spontaneously [J].
Mehrgardi, Masoud A. ;
Mofidfar, Mohammad ;
Zare, Richard N. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (17) :7606-7609
[17]   Liquid phase condensation in cell physiology and disease [J].
Shin, Yongdae ;
Brangwynne, Clifford P. .
SCIENCE, 2017, 357 (6357)
[18]   Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations [J].
Tsang, Brian ;
Pritisanac, Iva ;
Scherer, Stephen W. ;
Moses, Alan M. ;
Forman-Kay, Julie D. .
CELL, 2020, 183 (07) :1742-1756
[19]   The corona of a surface bubble promotes electrochemical reactions [J].
Vogel, Yan B. ;
Evans, Cameron W. ;
Belotti, Mattia ;
Xu, Longkun ;
Russell, Isabella C. ;
Yu, Li-Juan ;
Fung, Alfred K. K. ;
Hill, Nicholas S. ;
Darwish, Nadim ;
Goncales, Vinicius R. ;
Coote, Michelle L. ;
Iyer, K. Swaminathan ;
Ciampi, Simone .
NATURE COMMUNICATIONS, 2020, 11 (01)
[20]   Organic Reactions in Microdroplets: Reaction Acceleration Revealed by Mass Spectrometry [J].
Yan, Xin ;
Bain, Ryan M. ;
Cooks, R. Graham .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (42) :12960-12972