An Approach to Botnet Malware Detection Using Nonparametric Bayesian Methods

被引:1
|
作者
Divita, Joseph [1 ]
Hallman, Roger A. [2 ]
机构
[1] US Dept Def, SPAWAR Syst Ctr Pacific, San Diego, CA 92123 USA
[2] US Dept Def, SPAWAR Syst Ctr Pacific, Cybersecur S&T Branch, San Diego, CA USA
来源
PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY (ARES 2017) | 2017年
关键词
Botnets; Cybersecurity; Nonparametric Bayesian Methods; INTERNET;
D O I
10.1145/3098954.3107010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Botnet malware, which infects Internet-connected devices and seizes control for a remote botmaster, is a long-standing threat to Internet-connected users and systems. Botnets are used to conduct DDoS attacks, distributed computing (e.g., mining bitcoins), spread electronic spam and malware, conduct cyberwarfare, conduct click-fraud scams, and steal personal user information. Current approaches to the detection and classification of botnet malware include syntactic, or signature-based, and semantic, or context-based, detection techniques. Both methods have shortcomings and botnets remain a persistent threat. In this paper, we propose a method of botnet detection using Nonparametric Bayesian Methods.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Malware Detection Using Nonparametric Bayesian Clustering and Classification Techniques
    Kao, Yimin
    Reich, Brian
    Storlie, Curtis
    Anderson, Blake
    TECHNOMETRICS, 2015, 57 (04) : 535 - 546
  • [2] An Android Malware Detection Approach Using Bayesian Inference
    Liu, Che-Hsun
    Zhang, Zhi-Jie
    Wang, Sheng-De
    2016 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (CIT), 2016, : 476 - 483
  • [3] A New Android Malware Detection Approach Using Bayesian Classification
    Yerima, Suleiman Y.
    Sezer, Sakir
    McWilliams, Gavin
    Muttik, Igor
    2013 IEEE 27TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS (AINA), 2013, : 121 - 128
  • [4] A Malware Detection Approach Using Malware Images and Autoencoders
    Jin, Xiang
    Xing, Xiaofei
    Elahi, Haroon
    Wang, Guojun
    Jiang, Hai
    2020 IEEE 17TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2020), 2020, : 1 - 6
  • [5] Nonparametric Bayesian methods
    Mueller, Peter
    Quintana, Fernando A.
    STATISTICAL MODELLING, 2008, 8 (01) : 1 - 2
  • [6] Network Anomaly Intrusion Detection Using a Nonparametric Bayesian Approach and Feature Selection
    Alhakami, Wajdi
    Alharbi, Abdullah
    Bourouis, Sami
    Alroobaea, Roobaea
    Bouguila, Nizar
    IEEE ACCESS, 2019, 7 : 52181 - 52190
  • [7] Generic Feature Selection Measure for Botnet Malware Detection
    Berg, Peter Ekstrand
    Franke, Katrin
    Hai Thanh Nguyen
    2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 711 - 717
  • [8] Metamorphic malware detection using base malware identification approach
    Mahawer, Devendra Kumar
    Nagaraju, A.
    SECURITY AND COMMUNICATION NETWORKS, 2014, 7 (11) : 1719 - 1733
  • [9] Nonparametric Bayesian approach to extrapolation problems in configuration interaction methods
    Yoshida, Sota
    PHYSICAL REVIEW C, 2020, 102 (02)
  • [10] Cloud-based Android Botnet Malware Detection System
    Jadhav, Suyash
    Dutia, Shobhit
    Calangutkar, Kedarnath
    Oh, Tae
    Kim, Young Ho
    Kim, Joeng Nyeo
    2015 17TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2015, : 347 - 352