The logarithmic energy of zeros and poles of a rational function

被引:1
|
作者
Dubinin, V. N. [1 ]
机构
[1] Far Eastern Fed Univ, Inst Appl Math, Vladivostok, Russia
基金
俄罗斯科学基金会;
关键词
rational function; Zolotarev fraction; lemniscate; logarithmic energy;
D O I
10.1134/S0037446616060057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On assuming that certain lemniscates of a rational function are connected, we establish some sharp inequality that involves the logarithmic energy of a discrete charge concentrated at the zeros and poles of this function and the absolute values of its derivatives at these points. The equality in this estimate is attained for specially arranged zeros and poles of a suitable Zolotarev fraction and for special distributions of charge.
引用
收藏
页码:981 / 986
页数:6
相关论文
共 50 条
  • [1] The logarithmic energy of zeros and poles of a rational function
    V. N. Dubinin
    Siberian Mathematical Journal, 2016, 57 : 981 - 986
  • [2] Zeros of the Derivative of a Rational Function and Coinvariant Subspaces for the Shift Operator on the Bergman Space
    I. V. Videnskii
    Journal of Mathematical Sciences, 2004, 120 (5) : 1657 - 1661
  • [3] ON THE DERIVATIVE OF A RATIONAL POLYNOMIAL WITH PRESCRIBED POLES
    Dinesh, T.
    Hans, S.
    Tyagi, Babita
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 453 - 460
  • [4] Perturbing Rational Harmonic Functions by Poles
    Sete, Olivier
    Luce, Robert
    Liesen, Joerg
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2015, 15 (01) : 9 - 35
  • [5] An extremal problem for the derivative of a rational function
    Dubinin, V. N.
    MATHEMATICAL NOTES, 2016, 100 (5-6) : 714 - 719
  • [6] Inequalities For rational functions with prescribed poles
    Hans, S.
    Tripathi, D.
    Mogbademu, A. A.
    Tyagi, Babita
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (01) : 157 - 169
  • [7] An extremal problem for the derivative of a rational function
    V. N. Dubinin
    Mathematical Notes, 2016, 100 : 714 - 719
  • [8] Perturbing Rational Harmonic Functions by Poles
    Olivier Sète
    Robert Luce
    Jörg Liesen
    Computational Methods and Function Theory, 2015, 15 : 9 - 35
  • [9] Some Inequalities for Rational Functions with Fixed Poles
    Mir, Abdullah
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2020, 55 (02): : 105 - 114
  • [10] Inequalities concerning rational functions with prescribed poles
    Mir, Abdullah
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (02): : 315 - 331