Rings all of whose finitely generated ideals are automorphism-invariant

被引:7
作者
Truong Cong Quynh [1 ]
Abyzov, Adel Nailevich [2 ]
Dao Thi Trang [3 ,4 ]
机构
[1] Univ Danang, Dept Math, Univ Sci & Educ, 459 Ton Duc Thang, Danang City, Vietnam
[2] Kazan Volga Reg Fed Univ, Dept Algebra & Math Log, 18 Kremlyovskaya Str, Kazan 420008, Russia
[3] Hue Univ, Coll Educ, Dept Math, 34 Le Loi, Hue City, Vietnam
[4] Ho Chi Minh City Univ Food Ind, Fac Appl Sci, 140 Le Trong Tan St, Ho Chi Minh City, Vietnam
关键词
Automorphism-invariant module; a-ring; fa-ring; fq-ring; MODULES;
D O I
10.1142/S0219498822501596
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Rings in which each finitely generated right ideal is automorphism-invariant (right farings) are shown to be isomorphic to a formal matrix ring. Among other results it is also shown that (1) if R is a right nonsingular ring and n > 1 is an integer, then R is a right self injective regular ring if and only if the matrix ring M-n (R) is a right fa-ring, if and only if M-n (R) is a right automorphism-invariant ring and (ii) a right nonsingular ring R is a right fa-ring if and only if R is a direct sum of a square-full von Neumann regular right self-injective ring and a strongly regular ring containing all invertible elements of its right maximal ring of fractions. In particular, we show that a right semiartinian (or left semiartinian) ring R is a right nonsingular right fa-ring if and only if R is a left nonsingular left fa-ring.
引用
收藏
页数:19
相关论文
共 29 条
[11]   Modules invariant under automorphisms of their covers and envelopes [J].
Guil Asensio, Pedro A. ;
Tutuncu, Derya Keskin ;
Srivastava, Ashish K. .
ISRAEL JOURNAL OF MATHEMATICS, 2015, 206 (01) :457-482
[12]   Automorphism-invariant modules satisfy the exchange property [J].
Guil Asensio, Pedro A. ;
Srivastava, Ashish K. .
JOURNAL OF ALGEBRA, 2013, 388 :101-106
[13]  
Isen A.M., 2000, HDB EMOTIONS, V2nd, P417
[15]  
Jain S.K., 2012, CYCLIC MODULES STRUC
[16]   QUASI-INJECTIVE AND PSEUDOINJECTIVE MODULES [J].
JAIN, SK ;
SINGH, S .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1975, 18 (03) :359-365
[17]   RINGS IN WHICH EVERY RIGHT IDEAL IS QUASI-INJECTIVE [J].
JAIN, SK ;
MOHAMED, SH ;
SINGH, S .
PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (01) :73-&
[18]  
Johnson R.E., 1961, J. London Math. Soc., V39, P260
[19]   Right self-injective rings in which every element is a sum of two units [J].
Khurana, Dinesh ;
Srivastava, Ashish K. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2007, 6 (02) :281-286
[20]   Rings with each right ideal automorphism-invariant [J].
Kosan, M. Tamer ;
Truong Cong Quynh ;
Srivastava, Ashish K. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (04) :1525-1537