Rings all of whose finitely generated ideals are automorphism-invariant

被引:7
作者
Truong Cong Quynh [1 ]
Abyzov, Adel Nailevich [2 ]
Dao Thi Trang [3 ,4 ]
机构
[1] Univ Danang, Dept Math, Univ Sci & Educ, 459 Ton Duc Thang, Danang City, Vietnam
[2] Kazan Volga Reg Fed Univ, Dept Algebra & Math Log, 18 Kremlyovskaya Str, Kazan 420008, Russia
[3] Hue Univ, Coll Educ, Dept Math, 34 Le Loi, Hue City, Vietnam
[4] Ho Chi Minh City Univ Food Ind, Fac Appl Sci, 140 Le Trong Tan St, Ho Chi Minh City, Vietnam
关键词
Automorphism-invariant module; a-ring; fa-ring; fq-ring; MODULES;
D O I
10.1142/S0219498822501596
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Rings in which each finitely generated right ideal is automorphism-invariant (right farings) are shown to be isomorphic to a formal matrix ring. Among other results it is also shown that (1) if R is a right nonsingular ring and n > 1 is an integer, then R is a right self injective regular ring if and only if the matrix ring M-n (R) is a right fa-ring, if and only if M-n (R) is a right automorphism-invariant ring and (ii) a right nonsingular ring R is a right fa-ring if and only if R is a direct sum of a square-full von Neumann regular right self-injective ring and a strongly regular ring containing all invertible elements of its right maximal ring of fractions. In particular, we show that a right semiartinian (or left semiartinian) ring R is a right nonsingular right fa-ring if and only if R is a left nonsingular left fa-ring.
引用
收藏
页数:19
相关论文
共 29 条
[1]   Automorphism-invariant modules [J].
Alahmadi, Abel ;
Facchini, Alberto ;
Nguyen Khanh Tung .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2015, 133 :241-259
[2]  
Anderson F. W., 1974, Rings and Categories of Modules
[3]  
[Anonymous], 1991, von Neumann regular rings
[4]   SEMIARTINIAN V-RINGS AND SEMIARTINIAN VON-NEUMANN REGULAR-RINGS [J].
BACCELLA, G .
JOURNAL OF ALGEBRA, 1995, 173 (03) :587-612
[5]  
Burgess W.D., 1979, CAN MATH BULLETIN, V22, P159
[6]   ALGEBRAS FOR WHICH EVERY INDECOMPOSABLE RIGHT MODULE IS INVARIANT IN ITS INJECTIVE ENVELOPE [J].
DICKSON, SE ;
FULLER, KR .
PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (03) :655-&
[7]   Rings and modules which are stable under automorphisms of their injective hulls [J].
Er, Noyan ;
Singh, Surjeet ;
Srivastava, Ashish K. .
JOURNAL OF ALGEBRA, 2013, 379 :223-229
[8]  
Faith C., 1964, ARCH MATH, V15, P166
[9]  
Fuchs L., 1969, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, Sr, V3, P541
[10]   Automorphism-Invariant Modules [J].
Guil Asensio, Pedro A. ;
Srivastava, Ashish K. .
NONCOMMUTATIVE RINGS AND THEIR APPLICATIONS, 2015, 634 :19-30