Throughput Based Adaptive Beamforming in 5G Millimeter Wave Massive MIMO Cellular Networks via Machine Learning

被引:1
作者
Lavdas, Spyros [1 ,4 ]
Gkonis, Panagiotis [2 ]
Zinonos, Zinon [1 ]
Trakadas, Panagiotis [3 ]
Sarakis, Lambros [2 ]
机构
[1] Neapolis Univ, Dept Comp Sci, CY-8042 Paphos, Cyprus
[2] Natl & Kapodistrian Univ Athens, Dept Digital Ind Technol, Dirfies Messapies, Greece
[3] Natl & Kapodistrian Univ Athens, Dept Port Management & Shipping, Dirfies Messapies, Greece
[4] Metropolitan Coll, 74 Sorou St, Athens 11525, Greece
来源
2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING) | 2022年
关键词
5G; machine learning; massive MIMO; millimeter wave transmission; system level simulations; FRAMEWORK;
D O I
10.1109/VTC2022-Spring54318.2022.9860566
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper the performance of an adaptive beamforming framework is evaluated, when deployed in fifth-generation massive multiple-input multiple-output millimeter wave cellular networks. To this end, active beams are formed dynamically according to traffic demands, in order to maximize spectral and energy efficiency (SE, EE) with reduced hardware and algorithmic complexity. In the same context, a machine learning (ML) approach is considered as well, where the configuration of the active beams per cell is directly related to the requested throughput in the cell's angular space. According to the presented results, the ML-assisted beamforming framework can improve EE with reduced algorithmic complexity compared to the non-ML case, depending on the tolerable amount of blocking probability.
引用
收藏
页数:7
相关论文
共 18 条
[1]   Improved optimal design of concrete gravity dams founded on anisotropic soils utilizing simulation-optimization model and hybrid genetic algorithm [J].
Al-Juboori M. ;
Datta B. .
ISH Journal of Hydraulic Engineering, 2021, 27 (S1) :20-37
[2]   Overview of Precoding Techniques for Massive MIMO [J].
Albreem, Mahmoud A. ;
Al Habbash, Alaa H. ;
Abu-Hudrouss, Ammar M. ;
Ikki, Salama S. .
IEEE ACCESS, 2021, 9 :60764-60801
[3]  
[Anonymous], 2018, Rel-16, v16.1.0, TR 38.901
[4]   Learning Radio Resource Management in RANs: Framework, Opportunities, and Challenges [J].
Calabrese, Francesco Davide ;
Wang, Li ;
Ghadimi, Euhanna ;
Peters, Gunnar ;
Hanzo, Lajos ;
Soldati, Pablo .
IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (09) :138-145
[5]   Achievable Spectral Efficiency of Hybrid Beamforming Massive MIMO Systems With Quantized Phase Shifters, Channel Non-Reciprocity and Estimation Errors [J].
Chen, Yawen ;
Wen, Xiangming ;
Lu, Zhaoming .
IEEE ACCESS, 2020, 8 :71304-71317
[6]   Deep-Learning-Based Millimeter-Wave Massive MIMO for Hybrid Precoding [J].
Huang, Hongji ;
Song, Yiwei ;
Yang, Jie ;
Gui, Guan ;
Adachi, Fumiyuki .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (03) :3027-3032
[7]   An Adaptive Hybrid Beamforming Approach for 5G-MIMO mmWave Wireless Cellular Networks [J].
Lavdas, Spyros ;
Gkonis, Panagiotis K. ;
Zinonos, Zinon ;
Trakadas, Panagiotis ;
Sarakis, Lambros .
IEEE ACCESS, 2021, 9 :127767-127778
[8]   A Survey of NOMA: Current Status and Open Research Challenges [J].
Makki, Behrooz ;
Chitti, Krishna ;
Behravan, Ali ;
Alouini, Mohamed-Slim .
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2020, 1 :179-189
[9]  
MATLAB, 2021, VERS 9 11 0 R2021B
[10]   Effect of round corners on bowtie antennas [J].
Qu, S. W. ;
Ruan, C. L. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2006, 57 :179-195