Numerical approximation of the integral fractional Laplacian

被引:71
作者
Bonito, Andrea [1 ]
Lei, Wenyu [1 ,2 ]
Pasciak, Joseph E. [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] SISSA, Math Area, Trieste, Italy
基金
美国国家科学基金会;
关键词
DIRICHLET PROBLEM; BOUNDARY; REGULARITY; EQUATION; DOMAINS; POWERS;
D O I
10.1007/s00211-019-01025-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new nonconforming finite element algorithm to approximate the solution to the elliptic problem involving the fractional Laplacian. We first derive an integral representation of the bilinear form corresponding to the variational problem. The numerical approximation of the action of the corresponding stiffness matrix consists of three steps: (1) apply a sinc quadrature scheme to approximate the integral representation by a finite sum where each term involves the solution of an elliptic partial differential equation defined on the entire space, (2) truncate each elliptic problem to a bounded domain, (3) use the finite element method for the space approximation on each truncated domain. The consistency error analysis for the three steps is discussed together with the numerical implementation of the entire algorithm. The results of computations are given illustrating the error behavior in terms of the mesh size of the physical domain, the domain truncation parameter and the quadrature spacing parameter.
引用
收藏
页码:235 / 278
页数:44
相关论文
共 45 条
[1]   A FRACTIONAL LAPLACE EQUATION: REGULARITY OF SOLUTIONS AND FINITE ELEMENT APPROXIMATIONS [J].
Acosta, Gabriel ;
Pablo Borthagaray, Juan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) :472-495
[2]  
[Anonymous], CLASSICS APPL MATH
[3]   Extrapolation of Carleson measures and the analyticity of Kato's square-root operators [J].
Auscher, P ;
Hofmann, S ;
Lewis, JL ;
Tchamitchian, P .
ACTA MATHEMATICA, 2001, 187 (02) :161-190
[4]  
Bacuta C, 2000, INTERPOLATION SUBSPA
[5]   deal. II - A general-purpose object-oriented finite element library [J].
Bangerth, W. ;
Hartmann, R. ;
Kanschat, G. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04)
[6]   Critical nonlinearity exponent and self-similar asymptotics for Levy conservation laws [J].
Biler, P ;
Karch, G ;
Woyczynski, WA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (05) :613-637
[7]   On sinc quadrature approximations of fractional powers of regularly accretive operators [J].
Bonito, Andrea ;
Lei, Wenyu ;
Pasciak, Joseph E. .
JOURNAL OF NUMERICAL MATHEMATICS, 2019, 27 (02) :57-68
[8]   Numerical approximation of fractional powers of regularly accretive operators [J].
Bonito, Andrea ;
Pasciak, Joseph E. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) :1245-1273
[9]   The approximation of parabolic equations involving fractional powers of elliptic operators [J].
Bonito, Andrea ;
Lei, Wenyu ;
Pasciak, Joseph E. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 315 :32-48
[10]   NUMERICAL APPROXIMATION OF FRACTIONAL POWERS OF ELLIPTIC OPERATORS [J].
Bonito, Andrea ;
Pasciak, Joseph E. .
MATHEMATICS OF COMPUTATION, 2015, 84 (295) :2083-2110