Bounds on resonances for the Laplacian on perturbations of half-space

被引:2
作者
Edward, J [1 ]
Pravica, D
机构
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
[2] E Carolina Univ, Dept Math, Greenville, NC 27858 USA
关键词
Laplacian; spectral resonances; resolvent estimates; half-space;
D O I
10.1137/S003614109733172X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The resonances of the Laplacian on perturbations of half-spaces of dimensions greater than or equal to two, with either Dirichlet or Neumann boundary conditions, are studied. An upper bound for the resonance counting function is proven. If the domain has an elliptic, nondegenerate, nonglancing periodic billiard trajectory, it is shown that there exists a sequence of resonances that converge to the real axis.
引用
收藏
页码:1175 / 1184
页数:10
相关论文
共 23 条
[1]  
BABICH VM, 1991, SPRINGER SER WAVE PH, V4
[2]  
GOHBERG IC, 1969, TRANSL MATH MONOGR
[3]  
INTISSAR A, 1986, COMMUN PART DIFF EQ, V11, P367
[4]  
INTISSAR A, UNPUB VALUE DISTRIBU
[5]  
LAX PD, 1989, SCATTERING THEORY
[6]  
Lazutkin V. F., 1993, ERGEB MATH GRENZGEB, V24, px+387
[7]  
LEVIN BY, 1964, TRANSL MATH MONOGR, V5
[8]  
MELROSE RB, 1984, POLYNOMIAL BOUNDS DI
[9]  
POPOV G, 1991, MICROLOCAL ANAL NONL
[10]  
Ralston J., 1977, J. Differential Geometry, V12, P87