THE HOPF AUTOMORPHISM GROUP AND THE QUANTUM BRAUER GROUP IN BRAIDED MONOIDAL CATEGORIES

被引:1
作者
Femic, B. [1 ]
机构
[1] Univ Republica, Fac Ciencias, Montevideo 11400, Uruguay
关键词
Brauer group; Azumaya algebras; Hopf algebras; Drinfel'd double; Braided monoidal categories; LONG GROUP; ALGEBRAS;
D O I
10.1142/S0219498812502246
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With the motivation of giving a more precise estimation of the quantum Brauer group of a Hopf algebra H over a field k we construct an exact sequence containing the quantum Brauer group of a Hopf algebra in a certain braided monoidal category. Let B be a Hopf algebra in C = (H)(H) YD, the category of Yetter-Drinfel'd modules over H. We consider the quantum Brauer group BQ(C; B) of B in C, which is isomorphic to the usual quantum Brauer group BQ(k; B (sic) H) of the Radford biproduct Hopf algebra B (sic) H. We show that under certain symmetricity condition on the braiding in C there is an inner action of the Hopf automorphism group of B on the former. We prove that the subgroup BM(C; B) - the Brauer group of module algebras over B in C - is invariant under this action for a family of Radford biproduct Hopf algebras. The analogous invariance we study for BM(k; B (sic) H). We apply our recent results on the latter group and generate a new subgroup of the quantum Brauer group of B (sic) H. In particular, we get new information on the quantum Brauer groups of some known Hopf algebras.
引用
收藏
页数:41
相关论文
共 50 条
[41]   ORE EXTENSIONS OF HOPF GROUP COALGEBRAS [J].
Wang, Dingguo ;
Lu, Daowei .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (02) :325-344
[42]   On the Hopf-Schur group of a field [J].
Aljadeff, Eli ;
Cuadra, Juan ;
Gelaki, Shlomo ;
Meir, Ehud .
JOURNAL OF ALGEBRA, 2008, 319 (12) :5165-5177
[43]   A BRAUER-CLIFFORD-LONG GROUP FOR THE CATEGORY OF DYSLECTIC HOPF YETTER-DRINFEL'D (S, H)-MODULE ALGEBRAS [J].
Guedenon, Thomas ;
Herman, Allen .
THEORY AND APPLICATIONS OF CATEGORIES, 2018, 33 :216-252
[44]   The Brauer-Clifford group of G-rings [J].
Turull, Alexandre .
JOURNAL OF ALGEBRA, 2011, 341 (01) :109-124
[45]   A RELATION BETWEEN THE BRAUER GROUP AND THE TATE-SHAFAREVICH GROUP [J].
Cheng, Chuangxun .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2012, 47 (02) :149-156
[46]   The Brauer group and the Brauer-Manin set of products of varieties [J].
Skorobogatov, Alexei N. ;
Zarhin, Yuri G. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (04) :749-768
[47]   A formula for the Brauer group of an algebraic torso [J].
Demarche, Cyril .
JOURNAL OF ALGEBRA, 2011, 347 (01) :96-132
[48]   On the finiteness of the Brauer group of an arithmetic scheme [J].
S. G. Tankeev .
Mathematical Notes, 2014, 95 :121-132
[49]   On the Brauer group of a real algebraic surface [J].
Krasnov, VA .
MATHEMATICAL NOTES, 1996, 60 (5-6) :707-710
[50]   THE BRAUER GROUP OF DEL PEZZO SURFACES [J].
Carter, Andrea C. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (02) :261-287