THE HOPF AUTOMORPHISM GROUP AND THE QUANTUM BRAUER GROUP IN BRAIDED MONOIDAL CATEGORIES

被引:1
作者
Femic, B. [1 ]
机构
[1] Univ Republica, Fac Ciencias, Montevideo 11400, Uruguay
关键词
Brauer group; Azumaya algebras; Hopf algebras; Drinfel'd double; Braided monoidal categories; LONG GROUP; ALGEBRAS;
D O I
10.1142/S0219498812502246
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With the motivation of giving a more precise estimation of the quantum Brauer group of a Hopf algebra H over a field k we construct an exact sequence containing the quantum Brauer group of a Hopf algebra in a certain braided monoidal category. Let B be a Hopf algebra in C = (H)(H) YD, the category of Yetter-Drinfel'd modules over H. We consider the quantum Brauer group BQ(C; B) of B in C, which is isomorphic to the usual quantum Brauer group BQ(k; B (sic) H) of the Radford biproduct Hopf algebra B (sic) H. We show that under certain symmetricity condition on the braiding in C there is an inner action of the Hopf automorphism group of B on the former. We prove that the subgroup BM(C; B) - the Brauer group of module algebras over B in C - is invariant under this action for a family of Radford biproduct Hopf algebras. The analogous invariance we study for BM(k; B (sic) H). We apply our recent results on the latter group and generate a new subgroup of the quantum Brauer group of B (sic) H. In particular, we get new information on the quantum Brauer groups of some known Hopf algebras.
引用
收藏
页数:41
相关论文
共 50 条
[31]   On the Picard group and the Brauer group of a real algebraic surface [J].
Krasnov, VA .
MATHEMATICAL NOTES, 2000, 67 (1-2) :168-175
[32]   On the Brauer group of a cocommutative coalgebra [J].
Cuadra, J ;
Rozas, JRG ;
Torrecillas, B ;
Van Oystaeyen, F .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (01) :67-83
[33]   The Brauer group of character rings [J].
Fritzsche, Tim .
JOURNAL OF ALGEBRA, 2012, 361 :37-40
[34]   Computing the equivariant Brauer group [J].
Pirutka, Alena ;
Zhang, Zhijia .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2025, 36 (08)
[35]   The Brauer-Clifford group [J].
Turull, Alexandre .
JOURNAL OF ALGEBRA, 2009, 321 (12) :3620-3642
[36]   COMPARING THE BRAUER GROUP TO THE TATE-SHAFAREVICH GROUP [J].
Geisser, Thomas H. .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2020, 19 (03) :965-970
[37]   GRADED TWISTING OF CATEGORIES AND QUANTUM GROUPS BY GROUP ACTIONS [J].
Bichon, Julien ;
Neshveyev, Sergey ;
Yamashita, Makoto .
ANNALES DE L INSTITUT FOURIER, 2016, 66 (06) :2299-2338
[38]   A generalization of the topological Brauer group [J].
Ershov, A. V. .
JOURNAL OF K-THEORY, 2008, 2 (03) :407-444
[39]   On Doi-Hopf modules and Yetter-Drinfeld modules in symmetric monoidal categories [J].
Bulacu, Daniel ;
Torrecillas, Blas .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (01) :89-115
[40]   Graded quantum groups and quasitriangular Hopf group-coalgebras [J].
Virelizier, A .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (09) :3029-3050