THE HOPF AUTOMORPHISM GROUP AND THE QUANTUM BRAUER GROUP IN BRAIDED MONOIDAL CATEGORIES

被引:1
作者
Femic, B. [1 ]
机构
[1] Univ Republica, Fac Ciencias, Montevideo 11400, Uruguay
关键词
Brauer group; Azumaya algebras; Hopf algebras; Drinfel'd double; Braided monoidal categories; LONG GROUP; ALGEBRAS;
D O I
10.1142/S0219498812502246
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With the motivation of giving a more precise estimation of the quantum Brauer group of a Hopf algebra H over a field k we construct an exact sequence containing the quantum Brauer group of a Hopf algebra in a certain braided monoidal category. Let B be a Hopf algebra in C = (H)(H) YD, the category of Yetter-Drinfel'd modules over H. We consider the quantum Brauer group BQ(C; B) of B in C, which is isomorphic to the usual quantum Brauer group BQ(k; B (sic) H) of the Radford biproduct Hopf algebra B (sic) H. We show that under certain symmetricity condition on the braiding in C there is an inner action of the Hopf automorphism group of B on the former. We prove that the subgroup BM(C; B) - the Brauer group of module algebras over B in C - is invariant under this action for a family of Radford biproduct Hopf algebras. The analogous invariance we study for BM(k; B (sic) H). We apply our recent results on the latter group and generate a new subgroup of the quantum Brauer group of B (sic) H. In particular, we get new information on the quantum Brauer groups of some known Hopf algebras.
引用
收藏
页数:41
相关论文
共 50 条
[1]   Quasitriangular Hopf Group Coalgebras and Braided Monoidal Categories [J].
Zhu, Meiling ;
Chen, Huixiang ;
Li, Libin .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2011, 36 (06) :1063-1070
[2]   HOPF CYCLIC COHOMOLOGY IN BRAIDED MONOIDAL CATEGORIES [J].
Khalkhali, Masoud ;
Pourkia, Arash .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2010, 12 (01) :111-155
[3]   Braided autoequivalences and the equivariant Brauer group of a quasitriangular Hopf algebra [J].
Dello, Jeroen ;
Zhang, Yinhuo .
JOURNAL OF ALGEBRA, 2016, 445 :244-279
[4]   Hopf monads on monoidal categories [J].
Bruguieres, Alain ;
Lack, Steve ;
Virelizier, Alexis .
ADVANCES IN MATHEMATICS, 2011, 227 (02) :745-800
[5]   Multiplier bialgebras in braided monoidal categories [J].
Boehm, Gabriella ;
Lack, Stephen .
JOURNAL OF ALGEBRA, 2015, 423 :853-889
[6]   New Braided T-Categories over Weak Crossed Hopf Group Coalgebras [J].
Zhou, Xuan ;
Yang, Tao .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[7]   The Hopf Automorphism Group of Two Classes of Drinfeld Doubles [J].
Sun, Hua ;
Hu, Mi ;
Hu, Jiawei .
SYMMETRY-BASEL, 2024, 16 (06)
[8]   The Equivariant Brauer Group of a Cocommutative Hopf Algebra [J].
Dello, J. ;
Zhang, Y. H. .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (11) :4161-4194
[9]   A Sequence to Compute the Brauer Group of Certain Quasi-Triangular Hopf Algebras [J].
Juan Cuadra ;
Bojana Femić .
Applied Categorical Structures, 2012, 20 :433-512
[10]   A Sequence to Compute the Brauer Group of Certain Quasi-Triangular Hopf Algebras [J].
Cuadra, Juan ;
Femic, Bojana .
APPLIED CATEGORICAL STRUCTURES, 2012, 20 (05) :433-512