Creep behavior of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) at 573

被引:36
作者
Yin, D. D. [1 ]
Wang, Q. D. [1 ,2 ]
Boehlert, C. J. [3 ]
Janik, V. [1 ,4 ]
Gao, Y. [1 ]
Ding, W. J. [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Natl Engn Res Ctr Light Alloys Net Forming, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[3] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA
[4] Czech Tech Univ, Prague 12135, Czech Republic
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2012年 / 546卷
基金
中国国家自然科学基金;
关键词
Mg-RE alloy; Creep; Long period stacking ordered (LPSO); In-situ; lntergranular cracking; DEFORMATION MECHANISMS; ELEVATED-TEMPERATURES; ALLOY DEVELOPMENT; MONKMAN-GRANT; HCP METALS; MAGNESIUM; ZN; MICROSTRUCTURE; STRENGTH; PHASES;
D O I
10.1016/j.msea.2012.03.060
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The effect of microstructure on the tensile-creep behavior of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) (WGZ1152) at 573K (0.64T(m)) and stresses between 30 MPa and 140 MPa was investigated. The minimum creep rate of the peak-aged (T6) alloy was almost two orders of magnitude lower than that for a WE54-T6 (Mg-5.2Y-3.6RE-0.5Zr (wt.%)) alloy. The peak-aged condition (T6) exhibited slightly greater creep resistance than the as-cast condition. The solution treated (T4) material exhibited the lowest creep resistance. The creep stress exponent (similar to 5) suggested that dislocation creep was the dominant secondary creep mechanism. The minimum creep rate and time-to-fracture could be described by the Monkman-Grant equation. An in-situ creep experiment indicated that intergranular cracking was prevalent in the tertiary creep regime and the crack propagation path tended to follow the grain boundaries. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:239 / 247
页数:9
相关论文
共 48 条
[1]   Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM [J].
Abe, E ;
Kawamura, Y ;
Hayashi, K ;
Inoue, A .
ACTA MATERIALIA, 2002, 50 (15) :3845-3857
[2]  
Apps P. J., 2006, MAGNESIUM ALLOYS THE, P53
[3]   The microstructure, tensile properties, and creep behavior of Mg-Zn alloys containing 0-4.4 wt.% Zn [J].
Boehlert, CJ ;
Knittel, K .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 417 (1-2) :315-321
[4]   The role of microstructure on ductility of die-cast AM50 and AM60 magnesium alloys [J].
Chadha, Gurjeev ;
Allison, John E. ;
Jones, J. Wayne .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2007, 38A (02) :286-297
[5]   Thermal properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) alloy [J].
Chen, C. J. ;
Wang, Q. D. ;
Yin, D. D. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 487 (1-2) :560-563
[6]   Novel equilibrium two phase Mg alloy with the long-period ordered structure [J].
Chino, Y ;
Mabuchi, M ;
Hagiwara, S ;
Iwasaki, H ;
Yamamoto, A ;
Tsubakino, H .
SCRIPTA MATERIALIA, 2004, 51 (07) :711-714
[7]   Aging behavior of Mg-9Gd-4Y-0.6Mn alloy [J].
Deng, Zhenzhen ;
Zhang, Xinming ;
Deng, Yunlai ;
Xiao, Yang ;
Guo, Tiancai .
2006 BIMW: 2006 BEIJING INTERNATIONAL MATERIALS WEEK, PTS 1-4: MAGNESIUM, 2007, 546-549 :425-+
[8]  
Dieter G.E., 1986, MECH METALLURGY, P751
[9]   Behavior of Mg-15Gd-5Y-0.5Zr alloy during solution heat treatment from 500 to 540°C [J].
Gao, Yan ;
Wang, Qudong ;
Gu, Jinhai ;
Zhao, Yang ;
Tong, Yan .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 459 (1-2) :117-123
[10]   Comparison of microstructure in Mg-10Y-5Gd-0.5Zr and Mg-10Y-5Gd-2Zn-0.5Zr alloys by conventional casting [J].
Gao, Yan ;
Wang, Qudong ;
Gu, Jinhai ;
Zhao, Yang ;
Tong, Yan ;
Yin, Dongdi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 477 (1-2) :374-378