Using Cramer-Rao theory combined with Monte Carlo simulations for the optimization of monolithic scintillator PET detectors

被引:31
作者
van der Laan, DJJ [1 ]
Maas, MC
Schaart, DR
Bruyndonckx, P
Léonard, S
van Eijk, CWE
机构
[1] Delft Univ Technol, NL-2629 JB Delft, Netherlands
[2] Vrije Univ Brussels, Inter Univ Inst High Energies, B-1050 Brussels, Belgium
关键词
Cramer-Rao lower bound; depth-of-interaction; Geant4 Monte Carlo simulations; monolithic scintillator blocks; positron emission tomography (PET);
D O I
10.1109/TNS.2006.873710
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We are investigating the possibility of using monolithic scintillator blocks as detectors for small animal positron emission tomography (PET). These detectors consist of several cm 3 of scintillating material, read out by one or more avalanche photo-diode (APD) arrays. The entry point of an incoming gamma photon is estimated from the distribution of the scintillation light over the APD pixels. To optimize the detector design, the influence of different design parameters is investigated using Geant4 simulations. To make it possible to study the influence of individual design parameters on the intrinsic spatial resolution of the detector, the use of a performance measure is proposed that is independent of the algorithm used to estimate the entry point, namely the Cramer-Rao lower bound on the estimation of the coordinates of a point source of light inside the crystal. To illustrate the use of this method, the influence of optical transport inside the detector is investigated for different detector designs, surface finishes and APD pixel sizes. A comparison with resolutions obtained from simulations involving beams of 511 keV annihilation photons indicates that this approach gives valid results.
引用
收藏
页码:1063 / 1070
页数:8
相关论文
共 16 条
[1]  
ADAM LE, P 2000 IEEE NUCL SCI, V3, P17
[2]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[3]   3D position readout from thick scintillators [J].
Antich, P ;
Malakhov, N ;
Parkey, R ;
Slavin, N ;
Tsyganov, E .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 480 (2-3) :782-787
[4]   Feasibility of a novel design of high resolution parallax-free Compton enhanced PET scanner dedicated to brain research [J].
Braem, A ;
Llatas, MC ;
Chesi, E ;
Correia, JG ;
Garibaldi, F ;
Joram, CX ;
Mathot, S ;
Nappi, E ;
da Silva, MR ;
Schoenahl, F ;
Séguinot, J ;
Weilhammer, P ;
Zaidi, H .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (12) :2547-2562
[5]   Neural network-based position estimators for PET detectors using monolithic LSO blocks [J].
Bruyndonckx, P ;
Léonard, S ;
Tavernier, S ;
Lemaître, C ;
Devroede, O ;
Wu, YB ;
Krieguer, M .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2004, 51 (05) :2520-2525
[6]   Study of spatial resolution and depth of interaction of APD-based PET detector modules using light sharing schemes [J].
Bruyndonckx, P ;
Léonard, S ;
Liu, JG ;
Tavernier, S ;
Szupryczynski, P ;
Fedorov, A .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2003, 50 (05) :1415-1419
[7]   Molecular imaging of small animals with dedicated PET tomographs [J].
Chatziioannou, AF .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE, 2002, 29 (01) :98-114
[8]  
CLEMENT D, P 1998 IEEE NUCL SCI, V3, P1448
[9]   Use of a neural network to exploit light division in a triangular scintillating crystal [J].
Delorme, S ;
Frei, R ;
Joseph, C ;
Loude, JF ;
Morel, C .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1996, 373 (01) :111-118
[10]   A novel PET detector block with three-dimensional hit position encoding [J].
LeBlanc, JW ;
Thompson, RA .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2004, 51 (03) :746-751