Variational-type inequalities for (η,θ,δ)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces

被引:5
作者
Lee, BS [1 ]
Lee, GM
Lee, SJ
机构
[1] Kyungsung Univ, Dept Math, Pusan 608736, South Korea
[2] Pukyong Natl Univ, Dept Appl Math, Pusan 608737, South Korea
基金
新加坡国家研究基金会;
关键词
variational-type inequalities; (eta; theta; delta)-pseudomonotone-type; nonreflexive Banach spaces; hemicontinuity; finite-dimensional upper semicontinuity;
D O I
10.1016/S0893-9659(01)00101-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce (eta, theta, delta)-pseudomonotone-type set-valued mappings and consider the existence of solutions to variational-type inequality problems for (eta, theta, delta)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:109 / 114
页数:6
相关论文
共 10 条
[1]  
Aubin J.-P., 1984, DIFFERENTIAL INCLUSI
[2]  
Behera A, 1997, INDIAN J PURE AP MAT, V28, P343
[3]   VARIATIONAL-INEQUALITIES FOR MONOTONE-OPERATORS IN NONREFLEXIVE BANACH-SPACES [J].
CHANG, SS ;
LEE, BS ;
CHEN, YQ .
APPLIED MATHEMATICS LETTERS, 1995, 8 (06) :29-34
[4]   A GENERALIZATION OF TYCHONOFF FIXED POINT THEOREM [J].
FAN, K .
MATHEMATISCHE ANNALEN, 1961, 142 (03) :305-310
[5]  
Knaster B, 1929, Fundamenta Mathematicae, V14, P132, DOI DOI 10.4064/FM-14-1-132-137
[6]   Variational inequalities for (η,θ)-pseudomonotone operators in nonreflexive Banach spaces [J].
Lee, BS ;
Lee, GM .
APPLIED MATHEMATICS LETTERS, 1999, 12 (05) :13-17
[7]   Vector variational-type inequalities for set-valued mappings [J].
Lee, BS ;
Lee, SJ .
APPLIED MATHEMATICS LETTERS, 2000, 13 (03) :57-62
[8]  
LEE BS, IN PRESS INDIAN J PU
[9]   Variational inequalities involving strongly pseudomonotone hemicontinuous mappings in nonreflexive Banach spaces [J].
Verma, RU .
APPLIED MATHEMATICS LETTERS, 1998, 11 (02) :41-43
[10]   Variational inequalities in nonreflexive Banach spaces [J].
Watson, PJ .
APPLIED MATHEMATICS LETTERS, 1997, 10 (02) :45-48