Assessment of the PW86+PBE+XDM density functional on van der Waals complexes at non-equilibrium geometries

被引:18
作者
Arabi, Alya A. [1 ]
Becke, Axel D. [1 ]
机构
[1] Dalhousie Univ, Dept Chem, Halifax, NS B3H 4R2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
HARTREE-FOCK MODEL; INTERMOLECULAR INTERACTIONS; INTERACTION ENERGIES; EXCHANGE-ENERGY; ACCURATE; APPROXIMATION; DATABASE; STATES; SPIN;
D O I
10.1063/1.4731342
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The deficiency of conventional density-functional theory (DFT) in properly describing van der Waals (vdW) (especially dispersion-bound) complexes has been extensively addressed in the past decade. There are now several new methods published in the literature that are capable of accurately capturing weak dispersion interactions in complexes at equilibrium geometries. However, the performance of these new methods at non-equilibrium geometries remains to be assessed. We have previously published [F. O. Kannemann and A. D. Becke, J. Chem. Theory Comput. 6, 1081 (2010); A. D. Becke, A. A. Arabi, and F. O. Kannemann, Can. J. Chem. 88, 1057 (2010)] that the functional PW86+PBE+XDM for exchange + correlation + dispersion, respectively, is a highly accurate functional for general thermochemistry and vdW complexes at equilibrium geometries. Here, we show that this nonempirical, except for two parameters in the dispersion damping part, functional also performs well for vdW complexes at compressed and stretched intermonomer separations. The mean absolute relative error (MARE) is 9.4% overall for vdW complexes in the "S22x5" database incorporating compressed and stretched geometries [J. Rezac, K. E. Riley, and P. Hobza, J. Chem. Theory Comput. 7, 2427 (2011)]. Our largest MARE on the S22x5 database is 13.3% on the compressed geometry set. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731342]
引用
收藏
页数:7
相关论文
共 27 条
[1]   A density-functional model of the dispersion interaction [J].
Becke, AD ;
Johnson, ER .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (15)
[2]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[3]   Exchange-hole dipole moment and the dispersion interaction revisited [J].
Becke, Axel D. ;
Johnson, Erin R. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (15)
[4]   Nonempirical density-functional theory for van der Waals interactions [J].
Becke, Axel D. ;
Arabi, Alya A. ;
Kannemann, Felix O. .
CANADIAN JOURNAL OF CHEMISTRY, 2010, 88 (11) :1057-1062
[5]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1
[6]  
Frisch M. J., 2016, Gaussian 03 Revision B.03
[7]   Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set [J].
Grafova, Lucie ;
Pitonak, Michal ;
Rezac, Jan ;
Hobza, Pavel .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (08) :2365-2376
[8]   Improved second-order Moller-Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies [J].
Grimme, S .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (20) :9095-9102
[9]   Long-range correlation energies from frequency-dependent weighted exchange-hole dipole polarisabilities [J].
Hesselmann, Andreas .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (01)
[10]   A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections [J].
Johnson, ER ;
Becke, AD .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (17)