Atomic decompositions of Triebel-Lizorkin spaces with local weights and applications

被引:1
作者
Liu, Liguang [2 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Local weight; Triebel-Lizorkin space; Atom; Lusin-Area function; Riesz transform; MUCKENHOUPT WEIGHTS; HARDY-SPACES; PSEUDODIFFERENTIAL-OPERATORS; APPROXIMATION NUMBERS; SUBLINEAR-OPERATORS; BOUNDEDNESS; EMBEDDINGS; ENTROPY;
D O I
10.1007/s11401-014-0824-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors characterize the inhomogeneous Triebel-Lizorkin spaces F (p,q) (s,w) (a"e (n) with local weight w by using the Lusin-area functions for the full ranges of the indices, and then establish their atomic decompositions for s a a"e, p a (0, 1] and q a [p,a). The novelty is that the weight w here satisfies the classical Muckenhoupt condition only on balls with their radii in (0, 1]. Finite atomic decompositions for smooth functions in F (p,q) (s,w) (a"e (n) are also obtained, which further implies that a (sub)linear operator that maps smooth atoms of F (p,q) (s,w) (a"e (n) uniformly into a bounded set of a (quasi-)Banach space is extended to a bounded operator on the whole F (p,q) (s,w) (a"e (n) . As an application, the boundedness of the local Riesz operator on the space F (p,q) (s,w) (a"e (n) is obtained.
引用
收藏
页码:237 / 260
页数:24
相关论文
共 28 条
[1]  
[Anonymous], 1991, CBMS REGIONAL C SERI
[2]  
[Anonymous], 2010, Theory of Function Spaces
[3]  
BUI H, 1981, MATH NACHR, V103, P45
[4]   Boundedness of an oscillating multiplier on Triebel-Lizorkin spaces [J].
Cao, Wei ;
Chen, Jie Cheng ;
Fan, Da Shan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (11) :2071-2084
[5]   Hypersingular parameterized Marcinkiewicz integrals with variable kernels on Sobolev and Hardy-Sobolev spaces [J].
Chen Jie-cheng ;
Yu Xiao ;
Zhang Yan-dan ;
Wang Hui .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2008, 23 (04) :420-430
[6]   DECOMPOSITION OF BESOV-SPACES [J].
FRAZIER, M ;
JAWERTH, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (04) :777-799
[7]   A DISCRETE TRANSFORM AND DECOMPOSITIONS OF DISTRIBUTION SPACES [J].
FRAZIER, M ;
JAWERTH, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :34-170
[8]   LOCAL VERSION OF REAL HARDY SPACES [J].
GOLDBERG, D .
DUKE MATHEMATICAL JOURNAL, 1979, 46 (01) :27-42
[9]  
Han Y S, 1995, Contemp. Math., Amer. Math. Soc., V189, P235
[10]   Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis [J].
Haroske, Dorothee D. ;
Piotrowska, Iwona .
MATHEMATISCHE NACHRICHTEN, 2008, 281 (10) :1476-1494