The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem

被引:65
作者
Brandts, Jan H. [1 ]
Korotov, Sergey [1 ]
Krizek, Michal [1 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst, NL-1018 TV Amsterdam, Netherlands
基金
芬兰科学院;
关键词
Reaction-diffusion problem; Maximum principle; Finite element method; Discrete maximum principle; Stieltjes matrix; Simplicial partition; Angle condition;
D O I
10.1016/j.laa.2008.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides a sufficient condition for the discrete maximum principle for a fully discrete linear simplicial finite element discretization of a reaction-diffusion problem to hold. It explicitly bounds the dihedral angles and heights of simplices in the finite element partition in terms of the magnitude of the reaction coefficient and the spatial dimension. As a result. it can be computed how small the acute simplices should be for the discrete maximum principle to be valid. Numerical experiments suggest that the bound. which considerably improves a similar bound in [P.G. Ciarlet, P.-A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Eng. 2 (1973) 17-31], is in fact sharp. (C) 2008 Published by Elsevier Inc.
引用
收藏
页码:2344 / 2357
页数:14
相关论文
共 20 条
[1]  
[Anonymous], 1951, NUMERISCHE BEHANDLUN, DOI DOI 10.1007/978-3-662-22248-5
[2]   Monotonicity of some perturbations of irreducibly diagonally dominant M-matrices [J].
Bouchon, Francois .
NUMERISCHE MATHEMATIK, 2007, 105 (04) :591-601
[3]   CONVERGENCE ESTIMATES FOR ESSENTIALLY POSITIVE TYPE DISCRETE DIRICHLET PROBLEMS [J].
BRAMBLE, JH ;
HUBBARD, BE ;
THOMEE, V .
MATHEMATICS OF COMPUTATION, 1969, 23 (108) :695-&
[4]   Dissection of the path-simplex in Rn into n path-subsimplices [J].
Brandts, Jan ;
Korotov, Sergey ;
Krizek, Michal .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (2-3) :382-393
[5]  
Ciarlet P. G., 1973, Computer Methods in Applied Mechanics and Engineering, V2, P17, DOI 10.1016/0045-7825(73)90019-4
[6]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[7]  
Ciarlet Philippe G, 1970, Aequationes Mathematicae, V4, P338
[8]   Failure of the discrete maximum principle for an elliptic finite element problem [J].
Draganescu, A ;
Dupont, TF ;
Scott, LR .
MATHEMATICS OF COMPUTATION, 2005, 74 (249) :1-23
[9]  
Forsythe G.E., 1960, FINITE DIFFERENCE ME
[10]   Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions [J].
Karátson, J ;
Korotov, S .
NUMERISCHE MATHEMATIK, 2005, 99 (04) :669-698