Identification of stably expressed reference small non-coding RNAs for microRNA quantification in high-grade serous ovarian carcinoma tissues

被引:58
作者
Bignotti, Eliana [1 ]
Calza, Stefano [2 ,3 ]
Tassi, Renata A. [4 ]
Zanotti, Laura [4 ]
Bandiera, Elisabetta [4 ]
Sartori, Enrico [5 ]
Odicino, Franco E. [5 ]
Ravaggi, Antonella [4 ]
Todeschini, Paola [4 ,6 ]
Romani, Chiara [4 ]
机构
[1] ASST Spedali Civili Brescia, Div Obstet & Gynecol, Brescia, Italy
[2] Univ Brescia, Dept Mol & Translat Med, Brescia, Italy
[3] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
[4] Univ Brescia, Angelo Nocivelli Inst Mol Med, Div Obstet & Gynecol, Brescia, Italy
[5] Univ Brescia, Div Obstet & Gynecol, Brescia, Italy
[6] Univ Milan, Doctorate Sch Mol & Translat Med, Milan, Italy
关键词
HGS-OvCa; sncRNA; qPCR; endogenous reference; normalization; RELATIVE QUANTIFICATION; SURFACE EPITHELIUM; REFERENCE GENES; NORMALIZATION; SIGNATURES; SELECTION; IDENTIFY;
D O I
10.1111/jcmm.12927
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
MicroRNAs (miRNAs) belong to a family of small non-coding RNAs (sncRNAs) playing important roles in human carcinogenesis. Multiple investigations reported miRNAs aberrantly expressed in several cancers, including high-grade serous ovarian carcinoma (HGS-OvCa). Quantitative PCR is widely used in studies investigating miRNA expression and the identification of reliable endogenous controls is crucial for proper data normalization. In this study, we aimed to experimentally identify the most stable reference sncRNAs for normalization of miRNA qPCR expression data in HGS-OvCa. Eleven putative reference sncRNAs for normalization (U6, SNORD48, miR-92a-3p, let-7a-5p, SNORD61, SNORD72, SNORD68, miR-103a-3p, miR-423-3p, miR-191-5p, miR-16-5p) were analysed on a total of 75 HGS-OvCa and 30 normal tissues, using a highly specific qPCR. Both the normal tissues considered to initiate HGS-OvCa malignant transformation, namely ovary and fallopian tube epithelia, were included in our study. Stability of candidate endogenous controls was evaluated using an equivalence test and validated by geNorm and NormFinder algorithms. Combining results from the three different statistical approaches, SNORD48 emerged as stably and equivalently expressed between malignant and normal tissues. Among malignant samples, considering groups based on residual tumour, miR-1915p was identified as the most equivalent sncRNA. On the basis of our results, we support the use of SNORD48 as best reference sncRNA for relative quantification in miRNA expression studies between HGS-OvCa and normal controls, including the first time both the normal tissues supposed to be HGS-OvCa progenitors. In addition, we recommend miR-191-5p as best reference sncRNA in miRNA expression studies with prognostic intent on HGS-OvCa tissues.
引用
收藏
页码:2341 / 2348
页数:8
相关论文
共 35 条
[11]   Integrated Analyses of microRNAs Demonstrate Their Widespread Influence on Gene Expression in High-Grade Serous Ovarian Carcinoma [J].
Creighton, Chad J. ;
Hernandez-Herrera, Anadulce ;
Jacobsen, Anders ;
Levine, Douglas A. ;
Mankoo, Parminder ;
Schultz, Nikolaus ;
Du, Ying ;
Zhang, Yiqun ;
Larsson, Erik ;
Sheridan, Robert ;
Xiao, Weimin ;
Spellman, Paul T. ;
Getz, Gad ;
Wheeler, David A. ;
Perou, Charles M. ;
Gibbs, Richard A. ;
Sander, Chris ;
Hayes, D. Neil ;
Gunaratne, Preethi H. .
PLOS ONE, 2012, 7 (03)
[12]   Modeling platinum sensitive and resistant high-grade serous ovarian cancer: development and applications of experiment alsystems [J].
Cunnea, Paula ;
Stronach, Euan A. .
FRONTIERS IN ONCOLOGY, 2014, 4
[13]   Post-transcriptional gene silencing by siRNAs and miRNAs [J].
Filipowicz, W ;
Jaskiewicz, L ;
Kolb, FA ;
Pillai, RS .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (03) :331-341
[14]   Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche [J].
Flesken-Nikitin, Andrea ;
Hwang, Chang-Il ;
Cheng, Chieh-Yang ;
Michurina, Tatyana V. ;
Enikolopov, Grigori ;
Nikitin, Alexander Yu .
NATURE, 2013, 495 (7440) :241-245
[15]   qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data [J].
Hellemans, Jan ;
Mortier, Geert ;
De Paepe, Anne ;
Speleman, Frank ;
Vandesompele, Jo .
GENOME BIOLOGY, 2007, 8 (02)
[16]   MicroRNA signatures in human ovarian cancer [J].
Iorio, Marilena V. ;
Visone, Rosa ;
Di Leva, Gianpiero ;
Donati, Valentina ;
Petrocca, Fabio ;
Casalini, Patrizia ;
Taccioli, Cristian ;
Volinia, Stefano ;
Liu, Chang-Gong ;
Alder, Hansjuerg ;
Calin, George A. ;
Menard, Sylvie ;
Croce, Carlo M. .
CANCER RESEARCH, 2007, 67 (18) :8699-8707
[17]   Recent Progress in the Diagnosis and Treatment of Ovarian Cancer [J].
Jelovac, Danijela ;
Armstrong, Deborah K. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2011, 61 (03) :183-203
[18]   Ovarian Carcinoma Subtypes Are Different Diseases: Implications for Biomarker Studies [J].
Koebel, Martin ;
Kalloger, Steve E. ;
Boyd, Niki ;
McKinney, Steven ;
Mehl, Erika ;
Palmer, Chana ;
Leung, Samuel ;
Bowen, Nathan J. ;
Ionescu, Diana N. ;
Rajput, Ashish ;
Prentice, Leah M. ;
Miller, Dianne ;
Santos, Jennifer ;
Swenerton, Kenneth ;
Gilks, C. Blake ;
Huntsman, David .
PLOS MEDICINE, 2008, 5 (12) :1749-1760
[19]   Origin and molecular pathogenesis of ovarian high-grade serous carcinoma [J].
Kurman, R. J. .
ANNALS OF ONCOLOGY, 2013, 24 :16-21
[20]   Ovarian serous carcinoma: recent concepts on its origin and carcinogenesis [J].
Li, Jie ;
Fadare, Oluwole ;
Xiang, Li ;
Kong, Beihua ;
Zheng, Wenxin .
JOURNAL OF HEMATOLOGY & ONCOLOGY, 2012, 5