Synthesis of Tin Catalyzed Silicon and Germanium Nanowires in a Solvent-Vapor System and Optimization of the Seed/Nanowire Interface for Dual Lithium Cycling

被引:89
作者
Mullane, Emma
Kennedy, Tadhg
Geaney, Hugh
Dickinson, Calum
Ryan, Kevin M. [1 ]
机构
[1] Univ Limerick, Mat & Surface Sci Inst, Limerick, Ireland
基金
爱尔兰科学基金会;
关键词
nanowire; silicon; germanium; tin catalyst; energy storage; lithium battery anodes; LI-ION BATTERIES; SI NANOWIRES; MOLTEN GALLIUM; GE NANOWIRES; HIGH-YIELD; GROWTH; PERFORMANCE; CAPACITY; ANODES; ELECTRODES;
D O I
10.1021/cm400367v
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon and germanium nanowires are grown in high density directly from a tin layer evaporated on stainless steel. The nanowires are formed in low cost glassware apparatus using the vapor phase of a high boiling point organic solvent as the growth medium. HRTEM, DFSTEM, EELS, and EDX analysis show the NWs are single crystalline with predominant < 111 > growth directions Investigation of the seed/nanowire interface shows that in the case of Si an amorphous carbon interlayer occurs that can be removed by modifying the growth conditions Electrochemical data shows that both the tin metal catalyst and the semiconductor nanowire reversibly cycle with lithium when the interface between the crystalline phases of the metal and semiconductor is abrupt The dually active nanowire arrays were shown to exhibit capacities greater than 1000 mAh.g(-1) after 50 charge/discharge cycles.
引用
收藏
页码:1816 / 1822
页数:7
相关论文
共 50 条
[1]   High-resolution detection of Au catalyst atoms in Si nanowires [J].
Allen, Jonathan E. ;
Hemesath, Eric R. ;
Perea, Daniel E. ;
Lensch-Falk, Jessica L. ;
Li, Z. Y. ;
Yin, Feng ;
Gass, Mhairi H. ;
Wang, Peng ;
Bleloch, Andrew L. ;
Palmer, Richard E. ;
Lauhon, Lincoln J. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :168-173
[2]   Metal surface nucleated supercritical fluid-solid-solid growth of Si and Ge/SiOx core-shell nanowires [J].
Barrett, Christopher A. ;
Gunning, Robert D. ;
Hantschel, Thomas ;
Arstila, Kai ;
O'Sullivan, Catriona ;
Geaney, Hugh ;
Ryan, Kevin M. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (01) :135-144
[3]  
Carim AH, 2001, ADV MATER, V13, P1489, DOI 10.1002/1521-4095(200110)13:19<1489::AID-ADMA1489>3.0.CO
[4]  
2-E
[5]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[6]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[7]   Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes [J].
Chan, Candace K. ;
Patel, Reken N. ;
O'Connell, Michael J. ;
Korgel, Brian A. ;
Cui, Yi .
ACS NANO, 2010, 4 (03) :1443-1450
[8]   Tin-Seeded Silicon Nanowires for High Capacity Li-Ion Batteries [J].
Chockla, Aaron M. ;
Klavetter, Kyle C. ;
Mullins, C. Buddie ;
Korgel, Brian A. .
CHEMISTRY OF MATERIALS, 2012, 24 (19) :3738-3745
[9]   Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries [J].
Chockla, Aaron M. ;
Bogart, Timothy D. ;
Hessel, Colin M. ;
Klavetter, Kyle C. ;
Mullins, C. Buddie ;
Korgel, Brian A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (34) :18079-18086
[10]   Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material [J].
Chockla, Aaron M. ;
Harris, Justin T. ;
Akhavan, Vahid A. ;
Bogart, Timothy D. ;
Holmberg, Vincent C. ;
Steinhagen, Chet ;
Mullins, C. Buddie ;
Stevenson, Keith J. ;
Korgel, Brian A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (51) :20914-20921