Multi-organ Detection in 3D Fetal Ultrasound with Machine Learning

被引:4
|
作者
Raynaud, Caroline [1 ]
Ciofolo-Veit, Cybele [1 ]
Lefevre, Thierry [1 ]
Ardon, Roberto [1 ]
Cavallaro, Angelo [2 ]
Salim, Ibtisam [2 ]
Papageorghiou, Aris [2 ]
Rouet, Laurence [1 ]
机构
[1] Philips Res MediSys, Paris, France
[2] Univ Oxford, Nuffield Dept Obstet & Gynaecol, Oxford, England
来源
FETAL, INFANT AND OPHTHALMIC MEDICAL IMAGE ANALYSIS | 2017年 / 10554卷
关键词
3D ultrasound; Volume alignment; Landmark localization;
D O I
10.1007/978-3-319-67561-9_7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
3D ultrasound (US) is a promising technique to perform automatic extraction of standard planes for fetal anatomy assessment. This requires prior organ localization, which is difficult to obtain with direct learning approaches because of the high variability in fetus size and orientation in US volumes. In this paper, we propose a methodology to overcome this spatial variability issue by scaling and automatically aligning volumes in a common 3D reference coordinate system. This preprocessing allows the organ detection algorithm to learn features that only encodes the anatomical variability while discarding the fetus pose. All steps of the approach are evaluated on 126 manually annotated volumes, with an overall mean localization error of 11.9 mm, showing the feasibility of multi-organ detection in 3D fetal US with machine learning.
引用
收藏
页码:62 / 72
页数:11
相关论文
共 50 条
  • [1] Machine learning for the detection of early immunological markers as predictors of multi-organ dysfunction
    Laura Bravo-Merodio
    Animesh Acharjee
    Jon Hazeldine
    Conor Bentley
    Mark Foster
    Georgios V. Gkoutos
    Janet M. Lord
    Scientific Data, 6
  • [2] Machine learning for the detection of early immunological markers as predictors of multi-organ dysfunction
    Bravo-Merodio, Laura
    Acharjee, Animesh
    Hazeldine, Jon
    Bentley, Conor
    Foster, Mark
    Gkoutos, Georgios V.
    Lord, Janet M.
    SCIENTIFIC DATA, 2019, 6 (01)
  • [3] A Review on Multi-organ Cancer Detection Using Advanced Machine Learning Techniques
    Sadad, Tariq
    Rehman, Amjad
    Hussain, Ayyaz
    Abbasi, Aaqif Afzaal
    Khan, Muhammad Qasim
    CURRENT MEDICAL IMAGING, 2021, 17 (06) : 686 - 694
  • [4] Deep-Learning-Based Multi-Organ Auto-Segmentation on 3D Transrectal Ultrasound for Ultrasound-Guided Prostate Brachytherapy
    Yang, X.
    Lei, Y.
    Wang, T.
    Roper, J. R.
    Patel, S. A.
    Jani, A.
    Bradley, J. D.
    Patel, P. R.
    Liu, T.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E119 - E119
  • [5] Integrated Multi-Organ Ultrasound
    Tung-Chen, Yale
    Weile, Jesper
    MEDICAL CLINICS OF NORTH AMERICA, 2025, 109 (01) : 191 - 202
  • [6] Recapitulating atopic dermatitis in vitro with a multi-organ 3D model
    Pappalardo, A.
    Rami, A.
    Guo, Z.
    Abaci, H.
    Christiano, A. M.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2021, 141 (05) : S103 - S103
  • [7] A MACHINE LEARNING FRAMEWORK FOR FULLY AUTOMATIC 3D FETAL CARDIAC ULTRASOUND EVALUATION
    Philip, Manna E.
    Ferrieira, Ana
    Tomar, Aishani
    Chawla, Sparsh
    Welsh, Alec W.
    Stevenson, Gordon N.
    Sowmya, Arcot
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [8] An Unsupervised Learning-Based Multi-Organ Registration Method for 3D Abdominal CT Images
    Yang, Shaodi
    Zhao, Yuqian
    Liao, Miao
    Zhang, Fan
    SENSORS, 2021, 21 (18)
  • [9] Federated 3D multi-organ segmentation with partially labeled and unlabeled data
    Zheng, Zhou
    Hayashi, Yuichiro
    Oda, Masahiro
    Kitasaka, Takayuki
    Misawa, Kazunari
    Mori, Kensaku
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2024,
  • [10] A multi-organ multi-disease CAD using chest 3D CT Images
    Niki, Noboru
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2006, 1 : 345 - 346