Multiwave interaction solutions for a (3+1)-dimensional nonlinear evolution equation

被引:11
作者
Cui, Wenying [2 ]
Li, Wei [3 ]
Liu, Yinping [1 ]
机构
[1] East China Normal Univ, Sch Math Sci, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
[3] East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Simplified Hirota method; Long wave limit; Parameters conjugated assignment; Inheritance solving; Interaction solution; LUMP; WAVES;
D O I
10.1007/s11071-020-05809-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, by the direct algebraic method, together with the inheritance solving strategy, new types of interaction solutions among solitons, rational waves and periodic waves are constructed for a (3+1)-dimensional nonlinear evolution equation. Meanwhile, based on the simplified Hirota method, its interaction solutions among solitons, breathers and lumps of any higher orders are established by anN-soliton decomposition algorithm, together with the parameters conjugated assignment and long wave limit techniques. Finally, we demonstrate the dynamical behaviors of new interaction solutions by graphs.
引用
收藏
页码:1119 / 1129
页数:11
相关论文
共 24 条
[1]  
Agrawal GP, 2000, LECT NOTES PHYS, V542, P195
[2]  
An HL, 2019, NONLINEAR DYNAM, V98, P1275, DOI 10.1007/s11071-019-05261-6
[3]   Anatomy of modified Korteweg-de Vries equation for studying the modulated envelope structures in non-Maxwellian dusty plasmas: Freak waves and dark soliton collisions [J].
El-Tantawy, S. A. ;
Wazwaz, A. M. .
PHYSICS OF PLASMAS, 2018, 25 (09)
[4]   High-Order Lump-Type Solutions and Their Interaction Solutions to a (3+1)-Dimensional Nonlinear Evolution Equation [J].
Fang, Tao ;
Wang, Hui ;
Wang, Yun-Hu ;
Ma, Wen-Xiu .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (08) :927-934
[5]   Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations [J].
Geng, XG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (09) :2289-2303
[6]   N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation [J].
Geng, Xianguo ;
Ma, Yunling .
PHYSICS LETTERS A, 2007, 369 (04) :285-289
[7]   Interaction solutions between lump and stripe soliton to the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation [J].
Guo, Fan ;
Lin, Ji .
NONLINEAR DYNAMICS, 2019, 96 (02) :1233-1241
[8]  
Hirota R., 2004, The direct method in soliton theory, V155
[9]   EFFECT OF DISCRETENESS ON THE CONTINUUM-LIMIT OF THE HEISENBERG SPIN CHAIN [J].
LAKSHMANAN, M ;
PORSEZIAN, K ;
DANIEL, M .
PHYSICS LETTERS A, 1988, 133 (09) :483-488
[10]   Characteristics of the lump, lumpoff and rouge wave solutions in a (3+1)-dimensional generalized potential Yu-Toda-Sasa-Fukuyama equation [J].
Li, Zhi-Qiang ;
Tian, Shou-Fu ;
Wang, Hui ;
Yang, Jin-Jie ;
Zhang, Tian-Tian .
MODERN PHYSICS LETTERS B, 2019, 33 (24)