Exponential B-spline collocation solutions to the Gardner equation

被引:15
作者
Hepson, Ozlem Ersoy [1 ]
Korkmaz, Alper [2 ]
Dag, Idris [3 ]
机构
[1] Eskisehir Osmangazi Univ, Dept Math & Comp, Eskisehir, Turkey
[2] Cankiri Karatekin Univ, Dept Math, Cankiri, Turkey
[3] Eskisehir Osmangazi Univ, Dept Comp Engn, Eskisehir, Turkey
关键词
Stability; numerical analysis; PDE; splines; solitary waves; WAVE SOLUTIONS; SOLITONS; SYSTEM;
D O I
10.1080/00207160.2019.1594791
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Exponential B-splines are used to set up a collocation method for solving the Gardner equation. The space reduction of the Gardner equation is carried out to be able to obtain an exponential B-spline approximation for the collocation method. Thus, a coupled system is integrated using the Crank-Nicolson implicit method in time together with the first-order linearization method and then the collocation method is applied to have a linear algebraic system. This system is shown to be stable by using the Von Neumann analysis. The discrete maximum errors are found fairly small and relative changes of the conservation laws remain constant during simulations for the text problems.
引用
收藏
页码:837 / 850
页数:14
相关论文
共 35 条
[1]   Theoretical and numerical investigations on solitary wave solutions of Gardner equation [J].
Ak, Turgut ;
Triki, Houria ;
Dhawan, Sharanjeet ;
Erduran, Kutsi S. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (09)
[2]  
Akbar M. A., 2012, World Appl. Sci. J, V17, P1603
[3]   NUMERICAL APPROXIMATIONS OF THE DYNAMICAL SYSTEM GENERATED BY BURGERS' EQUATION WITH NEUMANN-DIRICHLET BOUNDARY CONDITIONS [J].
Allen, Edward J. ;
Burns, John A. ;
Gilliam, David S. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (05) :1465-1492
[4]  
[Anonymous], 2016, INT J DIFFER EQU
[5]   GALERKIN METHODS FOR A SCHRODINGER-TYPE EQUATION WITH A DYNAMICAL BOUNDARY CONDITION IN TWO DIMENSIONS [J].
Antonopoulou, D. C. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (04) :1127-1156
[6]   Multisymplectic box schemes for the complex modified Korteweg-de Vries equation [J].
Aydin, A. ;
Karasozen, B. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
[7]   On traveling wave solutions to combined KdV-mKdV equation and modified Burgers-KdV equation [J].
Bekir, Ahmet .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) :1038-1042
[8]   Exponential Twice Continuously Differentiable B-Spline Algorithm for Burgers' Equation [J].
Ersoy, O. ;
Dag, I. ;
Adar, N. .
UKRAINIAN MATHEMATICAL JOURNAL, 2018, 70 (06) :906-921
[9]   Exponential B-Splines for Numerical Solutions to Some Boussinesq Systems for Water Waves [J].
Ersoy, Ozlem ;
Korkmaz, Alper ;
Dag, Idiris .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) :4975-4994
[10]   New kinds of solutions to Gardner equation [J].
Fu, ZT ;
Liu, SD ;
Liu, SK .
CHAOS SOLITONS & FRACTALS, 2004, 20 (02) :301-309