Ranks of tensors and a generalization of secant varieties

被引:58
作者
Buczynski, Jaroslaw [1 ,2 ]
Landsberg, J. M. [3 ]
机构
[1] Univ Grenoble 1, Inst Fournier, F-38402 St Martin Dheres, France
[2] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
COMPUTATION; LOCUS;
D O I
10.1016/j.laa.2012.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce subspace rank as a tool for studying ranks of tensors and X-rank more generally. We derive a new upper bound for the rank of a tensor and determine the ranks of partially symmetric tensors in C-2 circle times C-b circle times C-b. We review the literature from a geometric perspective. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:668 / 689
页数:22
相关论文
共 41 条
[1]  
Abo H, 2009, T AM MATH SOC, V361, P767
[2]  
[Anonymous], 1993, Geometric invariant theory
[3]  
[Anonymous], 1983, PROGR MATH
[4]   Computing symmetric rank for symmetric tensors [J].
Bernardi, Alessandra ;
Gimigliano, Alessandro ;
Ida, Monica .
JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (01) :34-53
[5]  
Buczynski J., 2010, ARXIV10070192
[6]  
Burgisser P., 1997, ALGEBRAIC COMPLEXITY, V315
[7]   On Waring's problem for several algebraic forms [J].
Carlini, E ;
Chipalkatti, J .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (03) :494-517
[8]   On the ideals of secant varieties to certain rational varieties [J].
Catalisano, M. V. ;
Geramita, A. V. ;
Gimigliano, A. .
JOURNAL OF ALGEBRA, 2008, 319 (05) :1913-1931
[9]   Grassmannians of secant varieties [J].
Chiantini, L ;
Coppens, M .
FORUM MATHEMATICUM, 2001, 13 (05) :615-628
[10]   The waring locus of binary forms [J].
Chipalkatti, JV .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (04) :1425-1444