Data-Driven Simulation of Complex Multidimensional Time Series

被引:5
|
作者
Schruben, Lee W. [1 ]
Singham, Dashi I. [2 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Naval Postgrad Sch, Monterey, CA 93940 USA
来源
ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION | 2014年 / 24卷 / 01期
关键词
Flocking algorithms;
D O I
10.1145/2553082
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article introduces a new framework for resampling general time series data. The approach, inspired by computer agent flocking algorithms, can be used to generate inputs to complex simulation models or for generating pseudo-replications of expensive simulation outputs. The method has the flexibility to enable replicated sensitivity analysis for trace-driven simulation, which is critical for risk assessment. The article includes two simple implementations to illustrate the approach. These implementations are applied to nonstationary and state-dependent multivariate time series. Examples using emergency department data are presented.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Data-driven decomposition of seasonal time series
    Heiler, S
    Feng, YH
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 91 (02) : 351 - 363
  • [2] Data-driven portmanteau tests for time series
    Baragona, Roberto
    Battaglia, Francesco
    Cucina, Domenico
    TEST, 2022, 31 (03) : 675 - 698
  • [3] Data-driven portmanteau tests for time series
    Roberto Baragona
    Francesco Battaglia
    Domenico Cucina
    TEST, 2022, 31 : 675 - 698
  • [4] Data-Driven Modeling Based on Volterra Series for Multidimensional Blast Furnace System
    Gao, Chuanhou
    Jian, Ling
    Liu, Xueyi
    Chen, Jiming
    Sun, Youxian
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (12): : 2272 - 2283
  • [5] Data-driven Simulation
    Lazarova-Molnar, Sanja
    2022 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2022, : 18 - 18
  • [6] Multi-level stochastic refinement for complex time series and fields: a data-driven approach
    Sinhuber, M.
    Friedrich, J.
    Grauer, R.
    Wilczek, M.
    NEW JOURNAL OF PHYSICS, 2021, 23 (06):
  • [7] Data-driven estimates of the number of clusters in multivariate time series
    Rummel, Christian
    Mueller, Markus
    Schindler, Kaspar
    PHYSICAL REVIEW E, 2008, 78 (06):
  • [8] SAXO : An Optimized Data-driven Symbolic Representation of Time Series
    Bondu, A.
    Boulle, M.
    Grossin, B.
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [9] Predicting time series by data-driven spatiotemporal information transformation
    Tao, Peng
    Hao, Xiaohu
    Cheng, Jie
    Chen, Luonan
    INFORMATION SCIENCES, 2023, 622 : 859 - 872
  • [10] Upgrades of Genetic Programming for Data-Driven Modeling of Time Series
    Murari, A.
    Peluso, E.
    Spolladore, L.
    Rossi, R.
    Gelfusa, M.
    EVOLUTIONARY COMPUTATION, 2023, 31 (04) : 401 - 432