Sex-driven modifiers of Alzheimer risk A multimodality brain imaging study

被引:106
作者
Rahman, Aneela [1 ]
Schelbaum, Eva [1 ]
Hoffman, Katherine [3 ]
Diaz, Ivan [1 ,3 ]
Hristov, Hollie [1 ]
Andrews, Randolph [4 ]
Jett, Steven [1 ]
Jackson, Hande [1 ]
Lee, Andrea [1 ]
Sarva, Harini [1 ]
Pahlajani, Silky [1 ]
Matthews, Dawn [4 ]
Dyke, Jonathan [2 ]
de Leon, Mony J. [2 ]
Isaacson, Richard S. [1 ]
Brinton, Roberta D. [5 ,6 ]
Mosconi, Lisa [1 ,2 ]
机构
[1] Weill Cornell Med Coll, Dept Neurol, New York, NY 10065 USA
[2] Weill Cornell Med Coll, Dept Radiol, New York, NY 10065 USA
[3] Weill Cornell Med, Div Biostat & Epidemiol, Dept Healthcare Policy & Res, New York, NY USA
[4] ADM Diagnost, Chicago, IL USA
[5] Univ Arizona, Coll Med, Dept Pharmacol, Tucson, AZ USA
[6] Univ Arizona, Coll Med, Dept Neurol, Tucson, AZ USA
关键词
HYPOTHETICAL MODEL; DISEASE; DEMENTIA; ESTROGEN; OOPHORECTOMY;
D O I
10.1212/WNL.0000000000009781
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective To investigate sex differences in late-onset Alzheimer disease (AD) risks by means of multimodality brain biomarkers (beta-amyloid load via(11)C-Pittsburgh compound B [PiB] PET, neurodegeneration via(18)F-fluorodeoxyglucose [FDG] PET and structural MRI). Methods We examined 121 cognitively normal participants (85 women and 36 men) 40 to 65 years of age with clinical, laboratory, neuropsychological, lifestyle, MRI, FDG- and PiB-PET examinations. Several clinical (e.g., age, education,APOEstatus, family history), medical (e.g., depression, diabetes mellitus, hyperlipidemia), hormonal (e.g., thyroid disease, menopause), and lifestyle AD risk factors (e.g., smoking, diet, exercise, intellectual activity) were assessed. Statistical parametric mapping and least absolute shrinkage and selection operator regressions were used to compare AD biomarkers between men and women and to identify the risk factors associated with sex-related differences. Results Groups were comparable on clinical and cognitive measures. After adjustment for each modality-specific confounders, the female group showed higher PiB beta-amyloid deposition, lower FDG glucose metabolism, and lower MRI gray and white matter volumes compared to the male group (p< 0.05, family-wise error corrected for multiple comparisons). The male group did not show biomarker abnormalities compared to the female group. Results were independent of age and remained significant with the use of age-matched groups. Second to female sex, menopausal status was the predictor most consistently and strongly associated with the observed brain biomarker differences, followed by hormone therapy, hysterectomy status, and thyroid disease. Conclusion Hormonal risk factors, in particular menopause, predict AD endophenotype in middle-aged women. These findings suggest that the window of opportunity for AD preventive interventions in women is early in the endocrine aging process.
引用
收藏
页码:E166 / E178
页数:13
相关论文
共 38 条
[11]   Reproductive period and risk of dementia in a diverse cohort of health care members [J].
Gilsanz, Paola ;
Lee, Catherine ;
Corrada, Maria M. ;
Kawas, Claudia H. ;
Quesenberry, Charles P., Jr. ;
Whitmer, Rachel A. .
NEUROLOGY, 2019, 92 (17) :E2005-E2014
[12]   Executive summary of the Stages of Reproductive Aging Workshop+10: addressing the unfinished agenda of staging reproductive aging [J].
Harlow, Sioban D. ;
Gass, Margery ;
Hall, Janet E. ;
Lobo, Roger ;
Maki, Pauline ;
Rebar, Robert W. ;
Sherman, Sherry ;
Sluss, Patrick M. ;
de Villiers, Tobie J. .
MENOPAUSE-THE JOURNAL OF THE NORTH AMERICAN MENOPAUSE SOCIETY, 2012, 19 (04) :387-395
[13]  
Hastie T., 2009, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, V2nd ed., DOI DOI 10.1007/B94608
[14]   The clinical practice of risk reduction for Alzheimer's disease: A precision medicine approach [J].
Isaacson, Richard S. ;
Ganzer, Christine A. ;
Hristov, Hollie ;
Hackett, Katherine ;
Caesar, Emily ;
Cohen, Randy ;
Kachko, Robert ;
Melendez-Cabrero, Josefina ;
Rahman, Aneela ;
Scheyer, Olivia ;
Hwang, Mu Ji ;
Berkowitz, Cara ;
Hendrix, Suzanne ;
Mureb, Monica ;
Schelke, Matthew W. ;
Mosconi, Lisa ;
Seifan, Alon ;
Krikorian, Robert .
ALZHEIMERS & DEMENTIA, 2018, 14 (12) :1663-1673
[15]   Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers [J].
Jack, Clifford R., Jr. ;
Knopman, David S. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Weiner, Michael W. ;
Aisen, Paul S. ;
Shaw, Leslie M. ;
Vemuri, Prashanthi ;
Wiste, Heather J. ;
Weigand, Stephen D. ;
Lesnick, Timothy G. ;
Pankratz, Vernon S. ;
Donohue, Michael C. ;
Trojanowski, John Q. .
LANCET NEUROLOGY, 2013, 12 (02) :207-216
[16]   Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade [J].
Jack, Clifford R., Jr. ;
Knopman, David S. ;
Jagust, William J. ;
Shaw, Leslie M. ;
Aisen, Paul S. ;
Weiner, Michael W. ;
Petersen, Ronald C. ;
Trojanowski, John Q. .
LANCET NEUROLOGY, 2010, 9 (01) :119-128
[17]   Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans [J].
Katz, A ;
Nambi, SS ;
Mather, K ;
Baron, AD ;
Follmann, DA ;
Sullivan, G ;
Quon, MJ .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2000, 85 (07) :2402-2410
[18]   Menopausal hormone therapy and cognition [J].
Maki, Pauline M. ;
Girard, Lucille M. ;
Manson, JoAnn E. .
BMJ-BRITISH MEDICAL JOURNAL, 2019, 364
[19]   Clinical epidemiology of Alzheimer's disease: assessing sex and gender differences [J].
Mielke, Michelle M. ;
Vemuri, Prashanthi ;
Rocca, Walter A. .
CLINICAL EPIDEMIOLOGY, 2014, 6 :37-48
[20]  
Mosconi L, 2004, J NUCL MED, V45, P382