MICRO-MACRO LIMIT OF A NONLOCAL GENERALIZED AW-RASCLE TYPE MODEL

被引:33
作者
Chiarello, Felisia A. [1 ,2 ]
Friedrich, Jan [3 ]
Goatin, Paola [1 ]
Goettlich, Simone [3 ]
机构
[1] Univ Cote Azur, Inria Sophia Antipolis Mediterranee, INRIA, CNRS,LJAD, F-06902 Sophia Antipolis, France
[2] Politecn Torino, Dept Math Sci GL Lagrange, I-10129 Turin, Italy
[3] Univ Mannheim, D-68131 Mannheim, Germany
关键词
traffic flow; second-order models; nonlocal conservation laws; micro-macro limits; TRAFFIC FLOW MODELS; THE-LEADER MODELS; PARTICLE APPROXIMATION; 2ND-ORDER MODEL; WELL-POSEDNESS; WAVES; DERIVATION;
D O I
10.1137/20M1313337
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a Follow-the-Leader approximation of a nonlocal generalized Aw- Rascle-Zhang (GARZ) model for traffic flow. We prove the convergence to weak solutions of the corresponding macroscopic equations deriving L-infinity and BV estimates. We also provide numerical simulations illustrating the micro-macro convergence and we numerically investigate the nonlocal to local limit for both the microscopic and macroscopic models.
引用
收藏
页码:1841 / 1861
页数:21
相关论文
共 27 条
[1]  
[Anonymous], 2015, APPL MATH SCI
[2]   Resurrection of "second order" models of traffic flow [J].
Aw, A ;
Rascle, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (03) :916-938
[3]   Derivation of continuum traffic flow models from microscopic follow-the-leader models [J].
Aw, A ;
Klar, A ;
Materne, T ;
Rascle, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 63 (01) :259-278
[4]   Well-posedness of a conservation law with non-local flux arising in traffic flow modeling [J].
Blandin, Sebastien ;
Goatin, Paola .
NUMERISCHE MATHEMATIK, 2016, 132 (02) :217-241
[5]   Derivation of a first order traffic flow model of Lighthill-Whitham-Richards type [J].
Burger, Michael ;
Goettlich, Simone ;
Jung, Thomas .
IFAC PAPERSONLINE, 2018, 51 (09) :49-54
[6]  
Chiarello F. A., EUROPEAN J APPL MATH
[7]   GLOBAL ENTROPY WEAK SOLUTIONS FOR GENERAL NON-LOCAL TRAFFIC FLOW MODELS WITH ANISOTROPIC KERNEL [J].
Chiarello, Felisia Angela ;
Goatin, Paola .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (01) :163-180
[8]   Stationary wave profiles for nonlocal particle models of traffic flow on rough roads [J].
Chien, Jereme ;
Shen, Wen .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (06)
[9]  
Colombo M., 2019, RECENT RESULTS SINGU, P1
[10]   On the micro-macro limit in traffic flow [J].
Colombo, R. M. ;
Rossi, E. .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2014, 131 :217-235