The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences

被引:61
作者
Liu, Hong [1 ]
Yang, Qingshan [1 ]
Jiang, Daqing [1 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
关键词
Ergodic property; Exponentially stability; Stochastic Lyapunov functions; DIFFERENTIAL INFECTIVITY; DYNAMICS; HIV; TRANSMISSION; STABILITY;
D O I
10.1016/j.automatica.2012.02.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider a class of DI SIR epidemic models with saturated incidences and parameter perturbation. We investigate the asymptotic behavior according to the perturbation and the reproductive number R-0. When the perturbation is large, the infective in every group decays exponentially to zero while the susceptible converges weakly to stationary distribution regardless of the magnitude of R-0. When the perturbation is small, we get the same exponential stability and weak convergence if R-0 <= 1, and we use a new class of stochastic Lyapunov functions to obtain the ergodicity and positive recurrence if R-0 > 1. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:820 / 825
页数:6
相关论文
共 20 条
[1]   STABILITY IN DISTRIBUTION FOR A CLASS OF SINGULAR DIFFUSIONS [J].
BASAK, GK ;
BHATTACHARYA, RN .
ANNALS OF PROBABILITY, 1992, 20 (01) :312-321
[2]  
Bhatia N. P, 1967, Lecture Notes in Mathematics, V1, P113
[3]  
BLYTHE SP, 1988, IMA J MATH APPL MED, V5, P1
[4]  
BROWN GC, 1995, J INVERTEBR PATHOL, V65, P10, DOI 10.1006/jipa.1995.1002
[5]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[6]   A stochastic model for internal HIV dynamics [J].
Dalal, Nirav ;
Greenhalgh, David ;
Mao, Xuerong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) :1084-1101
[7]  
Freedman HI., 1994, J DYN DIFFER EQU, V6, P583, DOI [10.1007/BF02218848, DOI 10.1007/BF02218848]
[8]  
Gard T. C., 1988, INTRO STOCHASTIC DIF
[9]   An algorithmic introduction to numerical simulation of stochastic differential equations [J].
Higham, DJ .
SIAM REVIEW, 2001, 43 (03) :525-546
[10]   The differential infectivity and staged progression models for the transmission of HIV [J].
Hyman, JM ;
Li, J ;
Stanley, EA .
MATHEMATICAL BIOSCIENCES, 1999, 155 (02) :77-109