NEW COMPLEX ANALYTIC METHODS IN THE THEORY OF MINIMAL SURFACES: A SURVEY

被引:15
作者
Alarcon, Antonio [1 ,2 ]
Forstneric, Franc [3 ,4 ]
机构
[1] Univ Granada, Dept Geometria & Topol, Campus Fuentenueva S-N, E-18071 Granada, Spain
[2] Univ Granada, Inst Matemat IEMath GR, Campus Fuentenueva S-N, E-18071 Granada, Spain
[3] Univ Ljubljana, Fac Math & Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
[4] Inst Math Phys & Mech, Jadranska 19, SI-1000 Ljubljana, Slovenia
关键词
minimal surface; Riemann surface; Oka manifold; GAUSS MAP; CONJECTURES; CURVATURE; MANIFOLDS; EXISTENCE; TOPOLOGY; GEOMETRY;
D O I
10.1017/S1446788718000125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we survey recent developments in the classical theory of minimal surfaces in Euclidean spaces which have been obtained as applications of both classical and modern complex analytic methods; in particular, Oka theory, period dominating holomorphic sprays, gluing methods for holomorphic maps, and the Riemann-Hilbert boundary value problem. Emphasis is on results pertaining to the global theory of minimal surfaces, in particular, the Calabi-Yau problem, constructions of properly immersed and embedded minimal surfaces in R-n and in minimally convex domains of R-n, results on the complex Gauss map, isotopies of conformal minimal immersions, and the analysis of the homotopy type of the space of all conformal minimal immersions from a given open Riemann surface.
引用
收藏
页码:287 / 341
页数:55
相关论文
共 110 条