NEW COMPLEX ANALYTIC METHODS IN THE THEORY OF MINIMAL SURFACES: A SURVEY

被引:15
作者
Alarcon, Antonio [1 ,2 ]
Forstneric, Franc [3 ,4 ]
机构
[1] Univ Granada, Dept Geometria & Topol, Campus Fuentenueva S-N, E-18071 Granada, Spain
[2] Univ Granada, Inst Matemat IEMath GR, Campus Fuentenueva S-N, E-18071 Granada, Spain
[3] Univ Ljubljana, Fac Math & Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
[4] Inst Math Phys & Mech, Jadranska 19, SI-1000 Ljubljana, Slovenia
关键词
minimal surface; Riemann surface; Oka manifold; GAUSS MAP; CONJECTURES; CURVATURE; MANIFOLDS; EXISTENCE; TOPOLOGY; GEOMETRY;
D O I
10.1017/S1446788718000125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we survey recent developments in the classical theory of minimal surfaces in Euclidean spaces which have been obtained as applications of both classical and modern complex analytic methods; in particular, Oka theory, period dominating holomorphic sprays, gluing methods for holomorphic maps, and the Riemann-Hilbert boundary value problem. Emphasis is on results pertaining to the global theory of minimal surfaces, in particular, the Calabi-Yau problem, constructions of properly immersed and embedded minimal surfaces in R-n and in minimally convex domains of R-n, results on the complex Gauss map, isotopies of conformal minimal immersions, and the analysis of the homotopy type of the space of all conformal minimal immersions from a given open Riemann surface.
引用
收藏
页码:287 / 341
页数:55
相关论文
共 110 条
  • [1] TRANSVERSALITY IN MANIFOLDS OF MAPPINGS
    ABRAHAM, R
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1963, 69 (04) : 470 - &
  • [2] Ahlfors L. V., 1941, ACTA SOC SCI FENN A, V31
  • [3] Every Meromorphic Function is the Gauss Map of a Conformal Minimal Surface
    Alarcon, A.
    Forstneric, F.
    Lopez, F. J.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (04) : 3011 - 3038
  • [4] Alarcon A., 2017, ARXIV170104379
  • [5] Alarcon A., 2020, Mem. Amer. Math. Soc, V264
  • [6] Alarcon A, 2018, ARXIV180202004
  • [7] Darboux Charts Around Holomorphic Legendrian Curves and Applications
    Alarcon, Antonio
    Forstneric, Franc
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (03) : 893 - 922
  • [8] MINIMAL SURFACES IN MINIMALLY CONVEX DOMAINS
    Alarcon, Antonio
    Drnovsek, Barbara Drinovec
    Forstneric, Franc
    Lopez, Francisco J.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (03) : 1735 - 1770
  • [9] Every conformal minimal surface in R3 is isotopic to the real part of a holomorphic null curve
    Alarcon, Antonio
    Forstneric, Franc
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 740 : 77 - 109
  • [10] Embedded minimal surfaces in Rn
    Alarcon, Antonio
    Forstneric, Franc
    Lopez, Francisco J.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) : 1 - 24