Modeling Affect Dynamics: State of the Art and Future Challenges

被引:113
作者
Hamaker, E. L. [1 ]
Ceulemans, E. [2 ]
Grasman, R. P. P. P. [3 ]
Tuerlinckx, F. [2 ]
机构
[1] Univ Utrecht, Fac Social & Behav Sci, Methodol & Stat, NL-3584 CH Utrecht, Netherlands
[2] Katholieke Univ Leuven, Res Grp Quantitat Psychol & Individual Difference, Leuven, Belgium
[3] Univ Amsterdam, Psychol Methods, NL-1012 WX Amsterdam, Netherlands
关键词
affective dynamics; intensive longitudinal data; within-person; DIFFERENTIAL-EQUATION MODEL; NEGATIVE AFFECT; BAYESIAN-ESTIMATION; COMPONENT ANALYSIS; SPECTRAL-ANALYSIS; TIME-SERIES; MULTIVARIATE; EXPERIENCE; SIMULATION; STRESS;
D O I
10.1177/1754073915590619
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
The current article aims to provide an up-to-date synopsis of available techniques to study affect dynamics using intensive longitudinal data (ILD). We do so by introducing the following eight dichotomies that help elucidate what kind of data one has, what process aspects are of interest, and what research questions are being considered: (1) single- versus multiple-person data; (2) univariate versus multivariate models; (3) stationary versus nonstationary models; (4) linear versus nonlinear models; (5) discrete time versus continuous time models; (6) discrete versus continuous variables; (7) time versus frequency domain; and (8) modeling the process versus computing descriptives. In addition, we discuss what we believe to be the most urging future challenges regarding the modeling of affect dynamics.
引用
收藏
页码:316 / 322
页数:7
相关论文
共 58 条
[1]  
[Anonymous], 2001, MULTIVARIATE STAT MO
[2]   Emotional well-being in recently bereaved widows: A dynamical systems approach [J].
Bisconti, TL ;
Bergeman, CS ;
Boker, SM .
JOURNALS OF GERONTOLOGY SERIES B-PSYCHOLOGICAL SCIENCES AND SOCIAL SCIENCES, 2004, 59 (04) :P158-P167
[3]   Diary methods: Capturing life as it is lived [J].
Bolger, N ;
Davis, A ;
Rafaeli, E .
ANNUAL REVIEW OF PSYCHOLOGY, 2003, 54 :579-616
[4]  
Bolger N., 2013, Methodology in the Social Sciences
[5]   A Network Approach to Psychopathology: New Insights into Clinical Longitudinal Data [J].
Bringmann, Laura F. ;
Vissers, Nathalie ;
Wichers, Marieke ;
Geschwind, Nicole ;
Kuppens, Peter ;
Peeters, Frenk ;
Borsboom, Denny ;
Tuerlinckx, Francis .
PLOS ONE, 2013, 8 (04)
[6]   DeCon: A tool to detect emotional concordance in multivariate time series data of emotional responding [J].
Bulteel, Kirsten ;
Ceulemans, Eva ;
Thompson, Renee J. ;
Waugh, Christian E. ;
Gotlib, Ian H. ;
Tuerlinckx, Francis ;
Kuppens, Peter .
BIOLOGICAL PSYCHOLOGY, 2014, 98 :29-42
[7]   Interpersonal Affect Dynamics: It Takes Two (and Time) to Tango [J].
Butler, Emily A. .
EMOTION REVIEW, 2015, 7 (04) :336-341
[8]   An unscented Kalman filter approach to the estimation of nonlinear dynamical systems models [J].
Chow, Sy-Miin ;
Ferrer, Emilio ;
Nesselroade, John R. .
MULTIVARIATE BEHAVIORAL RESEARCH, 2007, 42 (02) :283-321
[9]   Dynamic Factor Analysis Models With Time-Varying Parameters [J].
Chow, Sy-Miin ;
Zu, Jiyun ;
Shifren, Kim ;
Zhang, Guangjian .
MULTIVARIATE BEHAVIORAL RESEARCH, 2011, 46 (02) :303-339
[10]   GET OVER IT! A MULTILEVEL THRESHOLD AUTOREGRESSIVE MODEL FOR STATE-DEPENDENT AFFECT REGULATION [J].
De Haan-Rietdijk, Silvia ;
Gottman, John M. ;
Bergeman, Cindy S. ;
Hamaker, Ellen L. .
PSYCHOMETRIKA, 2016, 81 (01) :217-241