Numerical stability and oscillation of the Runge-Kutta methods for equation x′(t) = ax(t) plus a0x(M[t plus N/M])

被引:1
|
作者
Song, Minghui [1 ]
Liu, M. Z. [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2012年
基金
中国国家自然科学基金;
关键词
stability; oscillation; differential equation; Runge-Kutta method; DIFFERENTIAL-EQUATIONS; THETA-METHODS; AU(T) PLUS; U'(T);
D O I
10.1186/1687-1847-2012-146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the numerical properties of Runge-Kutta methods for the alternately of retarded and advanced equation x '(t) = ax(t) + a(0)x(M[t+N/M]). Necessary and sufficient conditions for the stability and oscillation of the numerical solution are given. The conditions that the Runge-Kutta methods preserve the stability and oscillations of the analytic solutions are obtained. Some numerical experiments are illustrated.
引用
收藏
页数:13
相关论文
共 14 条
  • [1] Numerical stability and oscillation of the Runge-Kutta methods for equation x′(t)=ax(t)+a0x(M[t+NM])
    Minghui Song
    MZ Liu
    Advances in Difference Equations, 2012
  • [2] Oscillation of numerical solution in the Runge-Kutta methods for equation x'(t) = ax(t) plus a 0 x([t])
    Wang, Qi
    Qiu, Shen-shan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (04): : 943 - 950
  • [3] Oscillation of Numerical Solution in the Runge-Kutta Methods for Equation x'(t)=ax(t)+a0x([t])
    Qi WANG
    Shen-shan QIU
    Acta Mathematicae Applicatae Sinica, 2014, 30 (04) : 943 - 950
  • [4] Oscillation of numerical solution in the Runge-Kutta methods for equation x′(t) = ax(t) + a0x([t])
    Qi Wang
    Shen-shan Qiu
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 943 - 950
  • [5] Preservation of oscillations of the Runge-Kutta method for equation x′(t) plus ax(t) plus a1x([t-1])=0
    Liu, M. Z.
    Gao, J. F.
    Yang, Z. W.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (06) : 1113 - 1125
  • [6] Stability analysis of Runge-Kutta methods for systems u'(t) = Lu(t) plus Mu([t])
    Liang, Hui
    Liu, M. Z.
    Yang, Z. W.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 228 : 463 - 476
  • [7] Oscillation analysis of numerical solution in the θ-methods for equation x′(t)+ax(t)+a1x([t-1])=0
    Liu, M. Z.
    Gao, Jianfang
    Yang, Z. W.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) : 566 - 578
  • [8] Stability of Euler-Maclaurin Methods in the Numerical Solution of Equation u′(t) = au(t) plus a0u([t]) plus a1u([t-1])
    He, Chunyan
    Lv, Wanjin
    INFORMATION COMPUTING AND APPLICATIONS, PT 1, 2010, 105 : 62 - 69
  • [9] Convergence and Stability in Collocation Methods of Equation u′(t) = au(t) plus bu([t])
    Yan, Han
    Ma, Shufang
    Liu, Yanbin
    Sun, Hongquan
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [10] The set of pseudo solutions of the differential equation x(m)=f (t,x) in Banach spaces
    Kubiaczyk, I
    Sikorska-Nowak, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 68 (3-4): : 297 - 308