Spatially resolved analysis of FFPE tissue proteomes by quantitative mass spectrometry

被引:39
作者
Buczak, Katarzyna [1 ,8 ]
Kirkpatrick, Joanna M. [2 ,9 ]
Truckenmueller, Felicia [3 ]
Santinha, Deolinda [4 ,5 ]
Ferreira, Lino [4 ,5 ]
Roessler, Stephanie [3 ]
Singer, Stephan [6 ]
Beck, Martin [1 ,7 ]
Ori, Alessandro [2 ]
机构
[1] European Mol Biol Lab, Struct & Computat Biol Unit, Heidelberg, Germany
[2] Fritz Lipmann Inst FLI, Leibniz Inst Aging, Jena, Germany
[3] Univ Hosp Heidelberg, Inst Pathol, Heidelberg, Germany
[4] Univ Coimbra, Ctr Neurosci & Cell Biol, Coimbra, Portugal
[5] Univ Coimbra, Fac Med, Coimbra, Portugal
[6] Univ Hosp Tuebingen, Inst Pathol, Tubingen, Germany
[7] Max Planck Inst Biophys, Dept Mol Sociol, Frankfurt, Germany
[8] Univ Basel, Biozentrum, Basel, Switzerland
[9] Francis Crick Inst, Prote Sci Technol Platform, London, England
基金
欧盟地平线“2020”;
关键词
SAMPLE PREPARATION; PACKAGE; ANTIGEN; FASP;
D O I
10.1038/s41596-020-0356-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Formalin fixation and paraffin embedding (FFPE) of human tissue is a central strategy for preserving pathological specimens. This protocol describes how to process these specimens for spatially resolved LC-MS by laser-capture microdissection. Bottom-up mass spectrometry-based proteomics relies on protein digestion and peptide purification. The application of such methods to broadly available clinical samples such as formalin-fixed and paraffin-embedded (FFPE) tissues requires reversal of chemical crosslinking and the removal of reagents that are incompatible with mass spectrometry. Here, we describe in detail a protocol that combines tissue disruption by ultrasonication, heat-induced antigen retrieval and two alternative methods for efficient detergent removal to enable quantitative proteomic analysis of limited amounts of FFPE material. To show the applicability of our approach, we used hepatocellular carcinoma (HCC) as a model system. By combining the described protocol with laser-capture microdissection, we were able to quantify the intra-tumor heterogeneity of a tumor specimen on the proteome level using a single slide with tissue of 10-mu m thickness. We also demonstrate broader applicability to other tissues, including human gallbladder and heart. The procedure described in this protocol can be completed within 8 d.
引用
收藏
页码:2956 / 2979
页数:24
相关论文
共 44 条
[1]   Are formalin-fixed and paraffin-embedded tissues fit for proteomic analysis? [J].
Bayer, Malte ;
Angenendt, Linus ;
Schliemann, Christoph ;
Hartmann, Wolfgang ;
Konig, Simone .
JOURNAL OF MASS SPECTROMETRY, 2020, 55 (08)
[2]   Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries [J].
Bekker-Jensen, Dorte B. ;
Bernhardt, Oliver M. ;
Hogrebe, Alexander ;
Martinez-Val, Ana ;
Verbeke, Lynn ;
Gandhi, Tejas ;
Kelstrup, Christian D. ;
Reiter, Lukas ;
Olsen, Jesper V. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Multibatch TMT Reveals False Positives, Batch Effects and Missing Values [J].
Brenes, Alejandro ;
Hukelmann, Ens ;
Bensaddek, Dalila ;
Lamond, Angus, I .
MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (10) :1967-1980
[4]   Analysis of 1508 Plasma Samples by Capillary-Flow Data-Independent Acquisition Profiles Proteomics of Weight Loss and Maintenance [J].
Bruderer, Roland ;
Muntel, Jan ;
Muller, Sebastian ;
Bernhard, Oliver M. ;
Gandhi, Tejas ;
Cominetti, Ornella ;
Macron, Charlotte ;
Carayol, Jerome ;
Rinner, Oliver ;
Astrup, Arne ;
Saris, Wim H. M. ;
Hager, Jorg ;
Valsesia, Armand ;
Dayon, Loic ;
Reiter, Lukas .
MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (06) :1242-1254
[5]   Spatial Tissue Proteomics Quantifies Inter- and Intratumor Heterogeneity in Hepatocellular Carcinoma (HCC) [J].
Buczak, Katarzyna ;
Ori, Alessandro ;
Kirkpatrick, Joanna M. ;
Holzer, Kerstin ;
Dauch, Daniel ;
Roessler, Stephanie ;
Endris, Volker ;
Lasitschka, Felix ;
Parca, Luca ;
Schmidt, Alexander ;
Zender, Lars ;
Schirmacher, Peter ;
Krijgsveld, Jeroen ;
Singer, Stephan ;
Beck, Martin .
MOLECULAR & CELLULAR PROTEOMICS, 2018, 17 (04) :810-825
[6]   The antigen for Hep Par 1 antibody is the urea cycle enzyme carbamoyl phosphate synthetase 1 [J].
Butler, Samantha L. ;
Dong, Huijia ;
Cardona, Diana ;
Jia, Minghong ;
Zheng, Ran ;
Zhu, Haizhen ;
Crawford, James M. ;
Liu, Chen .
LABORATORY INVESTIGATION, 2008, 88 (01) :78-88
[7]   MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments [J].
Choi, Meena ;
Chang, Ching-Yun ;
Clough, Timothy ;
Broudy, Daniel ;
Killeen, Trevor ;
MacLean, Brendan ;
Vitek, Olga .
BIOINFORMATICS, 2014, 30 (17) :2524-2526
[8]   Development of a Sensitive, Scalable Method for Spatial, Cell-Type-Resolved Proteomics of the Human Brain [J].
Davis, Simon ;
Scott, Connor ;
Ansorge, Olaf ;
Fischer, Roman .
JOURNAL OF PROTEOME RESEARCH, 2019, 18 (04) :1787-1795
[9]   DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput [J].
Demichev, Vadim ;
Messner, Christoph B. ;
Vernardis, Spyros I. ;
Lilley, Kathryn S. ;
Ralser, Markus .
NATURE METHODS, 2020, 17 (01) :41-+
[10]   The Case for Proteomics and Phospho-Proteomics in Personalized Cancer Medicine [J].
Doll, Sophia ;
Gnad, Florian ;
Mann, Matthias .
PROTEOMICS CLINICAL APPLICATIONS, 2019, 13 (02)