The meshless method for a two-dimensional parabolic problem with a source parameter

被引:8
作者
Cheng, Rongjun [1 ,2 ]
Ge, Hongxia [3 ]
机构
[1] Zhejiang Univ, Ningbo Inst Technol, Dept Fundamental Course, Ningbo 315100, Zhejiang, Peoples R China
[2] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
[3] Ningbo Univ, Fac Sci, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
reproducing kernel particle method; meshless method; parabolic equation; overspecification; inverse problem;
D O I
10.1016/j.amc.2008.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the reproducing kernel particle method (RKPM) is used for finding the solution of a two-dimensional parabolic inverse problem with a source control parameter, and the corresponding discrete equations are obtained. Comparing with the numerical methods based on mesh, the reproducing kernel particle method only needs the scattered nodes instead of meshing the domain of the problem. The reproducing kernel particle method is an efficient mesh free technique for the numerical solution of partial differential equations. The result of numerical example is presented. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:730 / 737
页数:8
相关论文
共 13 条
[1]   Determination of an unknown source parameter in two-dimensional heat equation [J].
Baran, EC ;
Fatullayev, AG .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (03) :881-886
[2]   Meshless methods: An overview and recent developments [J].
Belytschko, T ;
Krongauz, Y ;
Organ, D ;
Fleming, M ;
Krysl, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) :3-47
[3]  
Cannon J. R., 1992, MECCANICA, V27, P85
[4]   NUMERICAL PROCEDURES FOR THE DETERMINATION OF AN UNKNOWN COEFFICIENT IN SEMILINEAR PARABOLIC DIFFERENTIAL-EQUATIONS [J].
CANNON, JR ;
LIN, YP ;
XU, SZ .
INVERSE PROBLEMS, 1994, 10 (02) :227-243
[5]   AN INVERSE PROBLEM OF FINDING A PARAMETER IN A SEMILINEAR HEAT-EQUATION [J].
CANNON, JR ;
LIN, YP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 145 (02) :470-484
[6]  
CANNON JR, 1990, NUMER METH PART D E, V2, P177, DOI DOI 10.1002/NUM.1690060207
[10]   Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions [J].
Dehghan, Mehdi ;
Tatari, Mehdi .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 44 (11-12) :1160-1168