Existence results for strong vector equilibrium problems and their applications

被引:28
作者
Bigi, Giancarlo [1 ]
Capata, Adela [2 ]
Kassay, Gabor [3 ]
机构
[1] Univ Pisa, Dipartimento Informat, I-56127 Pisa, Italy
[2] Tech Univ Cluj Napoca, Dept Math, RO-400020 Cluj Napoca, Romania
[3] Univ Babes Bolyai, Math & Comp Sci Fac, RO-400084 Cluj Napoca, Romania
关键词
equilibrium problems; existence results; Henig proper solutions; strong cone saddle-points; strong vector variational inequalities; POINTS; OPTIMALITY; THEOREMS; MINIMAX; HENIG; CONE;
D O I
10.1080/02331934.2010.528761
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
New existence results for the strong vector equilibrium problem are presented, relying on a well-known separation theorem in infinite-dimensional spaces. The main results are applied to strong cone saddle-points and strong vector variational inequalities providing new existence results, and furthermore they allow recovery of an earlier result from the literature.
引用
收藏
页码:567 / 583
页数:17
相关论文
共 38 条
[1]  
[Anonymous], 2013, Optima and Equilibria: An Introduction to Nonlinear Analysis
[2]   Characterizations of solutions for vector equilibrium problems [J].
Ansari, QH ;
Konnov, IV ;
Yao, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 113 (03) :435-447
[3]  
Ansari QH, 2000, NONCON OPTIM ITS APP, V38, P1
[4]   Existence of a solution and variational principles for vector equilibrium problems [J].
Ansari, QH ;
Konnov, IV ;
Yao, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 110 (03) :481-492
[5]   A generalization of vectorial equilibria [J].
Ansari, QH ;
Oettli, W ;
Schlager, D .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1997, 46 (02) :147-152
[6]   IMPROVED DEFINITION OF PROPER EFFICIENCY FOR VECTOR MAXIMIZATION WITH RESPECT TO CONES [J].
BENSON, HP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 71 (01) :232-241
[7]   Ekeland's principle for vector equilibrium problems [J].
Bianchi, M. ;
Kassay, G. ;
Pini, R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (07) :1454-1464
[8]   Coercivity conditions for equilibrium problems [J].
Bianchi, M ;
Pini, R .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 124 (01) :79-92
[9]   Vector equilibrium problems with generalized monotone bifunctions [J].
Bianchi, M ;
Hadjisavvas, N ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 92 (03) :527-542
[10]   A note on equilibrium problems with properly quasimonotone bifunctions [J].
Bianchi, M ;
Pini, R .
JOURNAL OF GLOBAL OPTIMIZATION, 2001, 20 (01) :67-76