Quivers, curves, and the tropical vertex

被引:28
作者
Gross, Mark [1 ]
Pandharipande, Rahul [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Quiver; Gromov-Witten; tropical; MODULI; SPACES;
D O I
10.4171/PM/1865
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Elements of the tropical vertex group are formal families of symplectomorphisms of the 2-dimensional algebraic torus. Commutators in the group are related to Euler characteristics of the moduli spaces of quiver representations and the Gromov-Witten theory of toric surfaces. After a short survey of the subject (based on lectures of Pandharipande at the 2009 Geometry summer school in Lisbon), we prove new results about the rays and symmetries of scattering diagrams of commutators (including previous conjectures by Gross-Siebert and Kontsevich). Where possible, we present both the quiver and Gromov-Witten perspectives.
引用
收藏
页码:211 / 259
页数:49
相关论文
共 21 条
  • [1] Assem I., 2006, Elements of Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory, V1
  • [2] BERSTEIN IN, 1973, RUSS MATH SURV, V28, P17
  • [3] Curves in Calabi-Yau threefolds and topological quantum field theory
    Bryan, J
    Pandharipande, R
    [J]. DUKE MATHEMATICAL JOURNAL, 2005, 126 (02) : 369 - 396
  • [4] Bryan J, 2008, J AM MATH SOC, V21, P101
  • [5] DENEF F, ARXIVHEPTH0702146
  • [6] Smooth models of quiver moduli
    Engel, Johannes
    Reineke, Markus
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2009, 262 (04) : 817 - 848
  • [7] Fulton W., 1993, H ROEVER LECT GEOMET, V131
  • [8] GROSS M, ARXIVMATH0703822
  • [9] GROSS M, DUKE J MATH IN PRESS
  • [10] KING AD, 1995, J REINE ANGEW MATH, V461, P179