On the modulus algorithm for the linear complementarity problem

被引:24
作者
Schäfer, U [1 ]
机构
[1] Univ Karlsruhe, Inst Angew Math, D-76128 Karlsruhe, Germany
关键词
linear complementarity problem; P-matrix; H-matrix; PSOR method;
D O I
10.1016/j.orl.2003.11.004
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Concerning three subclasses of P-matrices the modulus algorithm and the projected successive overrelaxation (PSOR) method solving the linear complementarity problem are compared to each other with respect to convergence. It is shown that the modulus algorithm is convergent for all three subclasses whereas the convergence of the PSOR method is only guaranteed for two of them. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:350 / 354
页数:5
相关论文
共 18 条
[1]  
Alefeld G., 1983, INTRO INTERVAL COMPU
[2]  
Berman A., 1987, NONNEGATIVE MATRICES
[3]  
Cottle R, 1992, The Linear Complementarity Problem
[4]   SOLUTION OF A QUADRATIC PROGRAMMING PROBLEM USING SYSTEMATIC OVERRELAXATION [J].
CRYER, CW .
SIAM JOURNAL ON CONTROL, 1971, 9 (03) :385-&
[5]  
Fiedler M., 1962, CZECH MATH J, V12, P382, DOI [10.21136/CMJ.1962.100526, DOI 10.21136/CMJ.1962.100526]
[6]   CONVERGENCE OF RELAXED PARALLEL MULTISPLITTING METHODS [J].
FROMMER, A ;
MAYER, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 119 :141-152
[7]   ITERATIVE ALGORITHMS FOR THE LINEAR COMPLEMENTARITY-PROBLEM [J].
KAPPEL, NW ;
WATSON, LT .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1986, 19 (3-4) :273-297
[8]  
Lancaster P., 1969, THEORY MATRICES
[9]  
Murty K, 1988, LINEAR COMPLEMENTARI
[10]  
Neumaier A., 1990, INTERVAL METHODS SYS